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Executive Summary

Background and Issues

In accordance with

th
e

Chesapeake 2000 Agreement,

th
e

Chesapeake Bay Program

h
a

s

recently

implemented important modifications to ( 1
)

ambient water quality criteria

f
o

r

living resources

and, ( 2
)

th
e

procedures to determine attainment o
f

those criteria. A novel statistical tool

f
o

r

attainment, termed the Cumulative Frequency Diagram (CFD) approach, was developed a
s a

substantial revision o
f

previous attainment procedures, which relied upon a simple statistical

summary o
f

observed samples. The approach was viewed a
s

advantageous in it
s

capacity to

represent degrees o
f

attainment in both time and space. In particular, it was recognized that

th
e

CFD could represent spatial data in a synoptic way: data that is extensively collected across

diverse platforms b
y

th
e

Chesapeake Bay Program Water Quality Monitoring Program. Because

th
e CFD approach is new to Bay Program applications, underlying statistical properties need to

b
e fully established. Such properties

a
re critical if th
e CFD approach is to b
e used to rigorously

define regional attainments in th
e

Chesapeake Bay.

In Fall 2005,

th
e

Chesapeake Bay Program Scientific, Technical and Advisory Committee

charged our working group to provide review and recommendations o
n

th
e CFD attainment

approach. A
s

terms o
f

reference w
e

used guidelines o
f

Best Available Science recently published

b
y

th
e

American Fisheries Society and

th
e

Estuarine Research Federation. Statistical issues that

w
e

reviewed included,

1
.

What

a
re

th
e

specific analytical/ statistical steps entailed in constructing CFD attainment

curves and how

a
re CFDs currently implemented? (Section 2
)

2
.

How rigorous is th
e

spatial interpolation process that feeds into th
e CFD approach?

Would alternative spatial modeling procedures ( e
.

g
.
,

kriging) substantially improve

estimation o
f

water quality attainment? (Section 3
)

3
.

What

a
re

th
e

specific analytical/ statistical steps entailed in constructing CFD reference

curves? (Section 4
)

4
.

What

a
re

th
e

statistical properties o
f

CFD curves? How does sampling density, levels o
f

attainment, and spatial covariance affect

th
e

shape o
f

CFD curves? What procedures
a
re

reliable

fo
r

estimating error bounds

fo
r

CFD curves? (Section 5
)

5
.

From a statistical viewpoint, does

th
e CFD approach qualify a
s

best available science?

(Section 6
)

6
.

What

a
re

th
e

most important remaining issues and what course o
f

directed research will

lead to a more statistically rigorous CFD approach over

th
e

next three years? ( Section 7
)

The central element o
f

our work was a series o
f

exercises o
n simulated datasets undertaken b
y

Dr. Perry to better evaluate 1
)

sample densities in time and space, 2
)

varying levels o
f

attainment, and 3
)

varying degrees o
f

spatial and temporal covariance. Further, trials o
f

spatial

modeling o
n fixed station Chesapeake Bay water quality data b
y

D
r
.

s Christman and Curriero

were conducted to begin to evaluate spatial modeling procedures. These exercises, literature

review and discussions leading to consensus opinion

a
re

th
e

basis o
f

o
u
r

findings. In August

1



2006,

th
e working group supplied preliminary findings and related text

f
o

r

u
s
e

in th
e 2006 CBP

Addendum to Ambient Water Quality Criteria that is now under review.

Findings

1
.

The CFD approach is feasible and efficient in representing water quality

attainment.

The CFD approach can effectively represent

th
e

spatial and temporal dimensions o
f

water

quality data to support inferences o
n whether regions within

th
e

Chesapeake Bay attain o
r

exceed water quality standards. The CFD approach is innovative but could support

general application in water quality attainment assessments in th
e

Chesapeake Bay and

elsewhere. The CFD approach meshes well within

th
e

Chesapeake Bay Program’s

monitoring and assessment approaches, which have important conceptual underpinnings

( e
.

g
.
,

segments defined b
y

designated uses).

In accepting

th
e CFD a
s

th
e best available approach

f
o
r

using time-space data,

th
e panel

contrasted it with

th
e

previous method and those sustained b
y

other jurisdictions. The

previous method used b
y the Chesapeake Bay Program, similar to th
e

approaches used in

other states, was simply based o
n EPA assessment guidance in which

a
ll samples in a

given spatial area were compiled and attainment was assumed a
s

long a
s > 10% o
f

th
e

samples

d
id

n
o
t

exceed

th
e

standard. In this past approach

a
ll samples were assumed to

b
e

fully representative o
f

th
e

specified space and time and were simply combined a
s

if

they were random samples from a uniform population. This approach was necessary a
t

th
e

time because

th
e

technology was

n
o
t

available

f
o
r

a more rigorous approach. But it

neglected spatial and temporal patterns that

a
re known to exist in th
e

standards measures.

The CFD approach was designed to better characterize those spatial and temporal

patterns and weight samples according to th
e

amount o
f

space o
r

time that they actually

represent.

2
. CFD curves are influenced b
y sampling density and spatial and temporal

covariance. These effects merit additional research. Conditional simulation offers a

productive means to further discover underlying statistical properties and to

construct confidence bounds o
n CFD curves, but further directed analyses are

needed to test the feasibility o
f

this modeling approach.

The panel finds that

th
e CFD approach in it
s current form is feasible,

b
u
t

that additional

research is needed to further refine and strengthen it a
s

a statistical tool. The CFD builds

o
n important statistical theory related to th
e

cumulative distribution function and a
s such,

it
s statistical properties

c
a
n

b
e simulated and deduced. Through conditional simulation

exercises, w
e

have also shown that it is feasible to construct confidence ellipses that

support inferences related to threshold curves o
r

other tests o
f

spatial and temporal

compliance. Work remains to b
e done in understanding fundamental properties o
f

how

the CFD represents likely covariances o
f

attainment in time and space and how temporal

and spatial correlations interact with sample size effects. Further, more work is needed in

analyzing biases across different types o
f

designated use segments. The panel expects

2



that a two-three year time frame o
f

directed research and development will b
e required to

identify and measure these sources o
f

bias and imprecision in support o
f

attainment

determinations.

3
.

The success o
f

the CFD-based assessment will b
e dependent upon decision rules

related to CFD reference curves. For valid comparisons, both reference and

attainment CFDs should b
e underlain b
y

similarsampling densities and spatial

covariance structures.

CFD reference curves represent desired segment-designated use water quality outcomes

and reflect sources o
f

acceptable natural variability. The reference and attainment curves

follow th
e

same general approach in derivation: water quality data collection, spatial

interpolation, comparison to biologically- based water quality criteria, and combination o
f

space- time attainment data through a CFD. Therefore,

th
e

biological reference curve

allows

f
o

r

implementation o
f

threshold uncertainty a
s

long a
s

th
e

reference curve is

sampled similarly to th
e

attainment curve. Therefore, w
e

advise that similar sample

densities

a
re used in th
e

derivation o
f

attainment and reference curves. A
s

this is n
o
t

always feasible, analytical methods are needed in th
e

future to equally weight sampling

densities between attainment and reference curves.

4
.

In comparison with

th
e

current IDW spatial interpolation method, kriging

represents a more robust method and was needed in our investigations o
n how

spatial covariance affects CFD statistical inferences. Still, the IDW approach may

sufficiently represent water quality data in many instances and lead to accurate

estimation o
f

attainment. A suggested strategy is to use a mix o
f

IDW and kriging

dependent upon situations where attainment was grossly exceeded o
r

clearly met

(IDW) versus more-

o
r
-

less “borderline” cases (kriging).

The current modeling approach

f
o
r

obtaining predicted attainment values in space is

Inverse Distance Weighting (IDW), a non-statistical spatial interpolator that uses

th
e

observed data to calculate a weighted average a
s

a predicted value

f
o
r

each location o
n

the prediction grid. IDW has several advantages. It is a spatial interpolator and in general

such methods have been shown to provide good prediction maps. In addition, it is easy to
implement and automate because it does not require any decision points during a

n

interpolation session. IDW also

h
a
s

a major disadvantage – it is n
o
t

a statistical method

that can account

f
o
r

sampling error.

Kriging is also a weighted average

b
u
t

first uses

th
e

data to estimate

th
e

weights to

provide statistically optimal spatial predictions. A
s

a recognized class o
f

statistical

methods with many years o
f

dedicated research into model selection and estimation,

kriging is designed to permit inferences from sampled data in th
e

presence o
f

uncertainty.

Thus the quantity and distribution o
f

th
e

sample data are reflected in those inferences.

Indeed,

th
e

panel’s initial trials o
n

th
e

role o
f

spatial sources o
f

error in th
e CFD have

depended upon

th
e

ability to propagate kriging interpolation uncertainty through

th
e CFD

process in generating confidence intervals o
f

attainment.

3



In comparison to IDW, kriging is more sophisticated but requires greater expertise in

implementation. Kriging is available in commercial statistical software and also in th
e

free open source R Statistical Computing Environment, and requires geostatistical

expertise and programming skills

f
o

r

those software packages. Segment b
y segment

variogram estimation and subsequent procedures would require substantial expert

supervision and decision- making. Thus, this approach is n
o
t

conducive to automation.

O
n

th
e

other hand, there may b
e CBP applications where

th
e

decision o
n attainment is

clearly

n
o
t

influenced to any substantial degree b
y

th
e

method o
f

spatial interpolation.

One suggested strategy is to use a mix o
f

IDW and kriging - dependent upon situations

where attainment was grossly exceeded o
r

clearly met (IDW) versus more-

o
r
-

less

“borderline” cases (kriging).

5
.

More intensive spatial and temporal monitoring o
f

water quality will improve the

CFD approach but will require further investigations o
n the influence o
f

spatial and

temporal covariance structures o
n the shape o
f

the CFD curve. This issue is

relevant in bringing 3
-

dimensional interpolations and continuous monitoring

streams into

th
e CFD approach.

In th
e

near future,

th
e

panel sees that

th
e CFD approach is particularly powerful when

linked to continuous spatial data streams made available through

th
e

cruise- track

monitoring program, and

th
e

promise o
f

continuous temporal data through further

deployment o
f

remote sensing platforms in th
e

Chesapeake Bay (Chesapeake Bay

Observing System: http:// www. cbos. org/). These data sets will support greater precision

and accuracy in both threshold and attainment determinations made through

th
e CFD

approach

b
u
t

will require directed investigations into how data covary over different

intervals o
f

time and space. Further, there may b
e important space- time interactions that

confound

th
e CFD attainment procedure.

Some o
f

th
e

assessments

f
o
r

th
e Bay such a
s

that

f
o
r

dissolved oxygen require three

dimensional interpolation,

b
u
t

th
e

field o
f

three dimensional interpolation is n
o
t

a
s

highly

developed a
s

that o
f

two dimensional interpolation. Kriging can b
e advantageously

applied in that it can use information from the data to develop direction dependent

weighted interpolations (anisotropy). Kriging can include covariates like depth. Options

f
o
r

implementing 3
-

D interpolation include: custom IDW software, custom kriging

software using GMS routines, o
r

custom kriging software using

th
e

R
-

package.

Recommendations

The panel identified critical research tasks that need resolution in th
e

near future. The following

is a li
s
t

o
f

critical aspects o
f

that needed research. These research tasks appear roughly in order

o
f

priority. However, it must b
e recognized that it is difficult to formulate a
s

s
e
t

o
f

tasks that

c
a
n

proceed with complete independence. For example, research o
n task 1 may show that

th
e

ability

to conditionally simulate the water quality surface is critical to resolving the sample size bias

issue. This discovery might eliminate IDW a
s

a choice o
f

interpolation under task 3
.

The Panel

4



h
a

s
made significant progress o

n several o
f

these research tasks and CBP is encouraged to

implement continued study in a way that maintains

th
e momentum established b
y

our panel.

Task

1
.

Effects o
f

Sampling Design o
n CFD Results

( a
)

Continue simulation work to evaluate CFD bias reduction via conditional simulation.

( b
)

Investigate conditional simulation f
o

r

interpolation methods other than kriging - this may

lead to more simulation work.

( c
)

Implement and apply interpolation with condition simulation o
n CBP data.

2
.

Statistical inference framework for the CFD

( a
)

Conduct confidence interval coverage experiments.

( b
)

Investigate confidence interval methods

f
o
r

non-kriging interpolation methods.

( c
)

Implement and evaluate confidence interval procedures.

3
.

Choice o
f

Interpolation Method

( a
)

Implement a file system and software utilizing kriging interpolation

f
o
r

CBP data.

( b
)

Compare interpolations and CFDs based o
n kriging and inverse distance weighting (IDW).

( c
)

Investigate nonparametric interpolation methods such a
s LOESS and spline approaches.

4
.

Three- Dimensional Interpolation

( a
)

Implement 2
- D kriging in layers to compare to current approach o
f

2
- D IDW in layers.

( b
)

Conduct studies o
f

3
- D anisotrophy in CBP data.

( c
)

Investigate software

f
o
r

full 3
- D interpolation.

5
.

High Density Temporal Data

( a
)

Develop methods to use these data to improve temporal aspect o
f CFD implementation.

( b
)

Investigate feasibility o
f

4
-

Dimensional interpolation.

5
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1
.

Introduction
In June 2000, Chesapeake Bay Program (CBP) partners adopted

th
e

Chesapeake 2000 agreement

(http:// www. chesapeakebay. net/ agreement. htm), a strategic plan that calls

f
o

r

defining

th
e

water

quality conditions necessary to protect aquatic living resources. These water quality conditions

a
re being defined through

th
e

development o
f

Chesapeake Bay specific water quality criteria

f
o

r

dissolved oxygen, water clarity, and chlorophyll_a to b
e implemented a
s

state water quality

standards b
y

2005. One element o
f

th
e

newly defined standards is a
n assessment tool that

addresses

th
e

spatial and temporal variability o
f

these water quality measures in establishing

compliance. This tool has become known a
s

th
e

Cumulative Frequency Diagram (CFD).

The (CFD) was first proposed a
s

a
n

assessment tool b
y

Paul Jacobson, o
f

Langhei Ecology

(www. LangheiEcology. com). A
t

that time

D
r
.

Jacobson was consulting with

th
e

Chesapeake

Bay Program a
s a member o
f

th
e Tidal Monitoring Network Redesign Team. Within this group,

the CFD concept gained immediate recognition and support a
s

a novel approach that permitted

independent modeling o
f

th
e

time and space dimensions o
f

th
e

continuous domain that underlies

Chesapeake Bay water quality parameters. In addition, because preparation o
f

th
e CFD uses

spatial interpolation,

th
e

approach can allow integration o
f

data collected o
n

different spatial

scales such a
s

fixed station data and cruise track data.

While

th
e

benefits o
f

th
e CFD approach has been recognized ( U
.

S
.

EPA 2003) and

th
e

th
e CBP

has begun implementation o
f

th
e

approach

f
o
r

certain water quality parameters and segments o
f

th
e

Chesapeake Bay, investigations o
f

th
e

statistical properties revealed that

th
e

underlying shape

parameters o
f

th
e CFD were sensitive

n
o
t

only to rates o
f

compliance

b
u
t

also to sampling design

elements such a
s

sample density. The novelty o
f

the approach coupled with concerns about it
s

statistical validity motivated

th
e

Chesapeake Bay Program to request that
it
s Scientific and

Technical Advisory Committee (http:// www. chesapeake. org/ stac/) empanel a group with

expertise in criteria assessment, spatial data interpolation, and statistics to assess

th
e

scientific

defensibility o
f

th
e CFD. Here w
e

report

th
e

findings o
f

this panel.

The primary goal o
f

this panel is to provide a
n

initial scientific review o
f

th
e CFD compliance

approach. This review addresses a wide range o
f

issues including: bias and statistical rigor,

uncertainty, practical implementation issues, and formulation o
f

reference curves. Because o
f

th
e

novelty o
f

th
e CFD approach,

th
e

panel

h
a
s

endeavored to research and explain

th
e

properties

o
f

the CFD and spatial modeling upon which the CFD approach depends to provide a basis

fo
r

this evaluation. These activities

a
re beyond

th
e

scope o
f

th
e

typical review. However, because

s
o

little is known about

th
e CFD, it was necessary to expand

th
e

knowledge base.

The report is organized into 7 sections. In Section 2 o
f

this report w
e

present

th
e CFD approach

a
s a series o
f

steps, each o
f

which needs to b
e considered carefully in evaluating

it
s statistical

properties. Spatial interpolation is a critical

b
u
t

th
e

most statistically nuanced step in th
e CFD

approach. Spatial interpolation o
f

water quality data in th
e CBP has to date received little

statistical review. In Section 3 w
e

evaluate alternative geostatistical methods a
s

they pertain to

th
e CFD approach. The CFD approach is a
n attainment procedure, which depends upon

statistical comparison between attainment and reference curves. In Section 4
,

w
e present

alternative types o
f

references curves and discuss statistical properties o
f

each. In Section 5 th
e

7



statistical properties o
f CFD curves (applicable to both attainment and reference curves) is

elucidated through a series o
f

conditional simulation trials.

In addition to this primary charge,

th
e

panel is sensitive to th
e

fact that

th
e CFD will b
e

employed in th
e

enforcement o
f

water quality standards. Use a
s a regulatory tool imposes a

standard o
f

credibility, which w
e

review in Section 6
. We use here “best available science” and

“best science” criteria to evaluate

th
e

overall validity and feasibility o
f

th
e CFD approach,

following guidelines established b
y the American Fisheries Society and Estuarine Research

Federation (Sullivan e
t

a
l.

2006). These follow other similarcriteria ( e
.

g
.
,

The Daubert Criteria

(Daubert v
.

Merrell Dow Pharmaceuticals, Inc., 1993) and include:

1
.

A clear statement o
f

objective

2
. A conceptual model, which is a framework

fo
r

characterizing systems, sating assumptions,

making predictions, and testing hypotheses.

3
. A good experimental design and a standardized method

f
o

r

collecting data.

4
.

Statistical rigor and sound logic

f
o
r

analysis and interpretation.

5
.

Clear documentation o
f

methods, results, and conclusions

6
.

Peer review.

The panel has made progress in better understanding statistical properties o
f

th
e CFD approach

and overall, w
e recommend it a
s

a feasible approach and one that qualifies under most criteria

f
o
r

best available science. Still, w
e

believe that our efforts should only represent

th
e

beginning

o
f

a longer term effort to ( 1
)

Use simulations and other means to support statistical comparisons

o
f

CFD curves; and ( 2
)

Support

th
e

CBP’s efforts to model water quality data with sufficient

rigor in both spatial and temporal dimensions. Research and implementation recommendations

follow in Section 7

8



2.0 Background
2
.1 The CFD assessment approach.

The water quality criteria assessment methodology currently proposed b
y

th
e

E
.

P
.

A
.

Chesapeake

Bay Program (CBP) involves

th
e

use o
f

a Cumulative Frequency Diagram (CFD) curve. This

curve is represented in a two dimensional plane o
f

percent time and percent space. This

document briefly discusses

th
e

reasoning that lead to th
e

development o
f

this assessment tool.

The proposed algorithm

f
o

r

estimating

th
e CFD is given and illustrated with small data sets.

Some properties and unresolved issues regarding

th
e

use o
f

th
e CFD

a
re briefly discussed. In

Section 5
,

simulation studies explore in greater specificity

th
e

multiple issues related to error and

bias in th
e CFD approach.

Reasoning behind the CFD Approach

The CFD assessment methodology evolved from a need to allow

f
o

r

variability in water quality

parameters due to unusual events. For

th
e

water quality parameter to b
e assessed, a threshold

criterion is established fo
r

which it is determined that water quality that exceeds this threshold is

in a degraded state (

F
o
r

simplicity, w
e

will speak o
f

exceeding

th
e

threshold a
s

representing

degradation, even though f
o
r

some water quality constituents such a
s

dissolved oxygen, it is

falling below a threshold that constitutes degradation). Because

a
ll water quality parameters

a
re

inherently variable in space and time, it is unlikely that a healthy bay will remain below

th
e

threshold in a
ll

places a
t

a
ll

times. In th
e

spatial dimension, there will b
e

small regions that

persistently exceed

th
e

threshold due to poor flushing o
r

other natural conditions. It is

recognized b
y CBP that these small regions o
f

degraded condition should

n
o
t

lead to a degraded

assessment

f
o
r

th
e

segment surrounding this small region. Similar logic applies in th
e

temporal

dimension. For a short period o
f

time, water quality in a large proportion o
f

a segment may

exceed

th
e

threshold, but if this condition is short lived and the segment quickly returns to a

healthy state, this does

n
o
t

represent a
n impairment o
f

th
e

designated use o
f

th
e

segment.

Recognition that ephemeral exceedances o
f

th
e

threshold in both time and space d
o

n
o
t

represent

persistent impairment o
f

th
e segment leads to a
n assessment methodology that will allow these

conditions to b
e classed a
s

acceptable while conditions o
f

persistent and wide spread impaired

condition will b
e

flagged a
s

unacceptable. The assessment methodology should first ask how

much o
f

th
e

segment (

f
o
r

simplicity, a spatial assessment unit is called a segment,

b
u
t

more

detail is given o
n

spatial assessment units in Section 2
)

is n
o
t

in compliance with

th
e

criteria

(percent o
f

space)

f
o
r

every point in time. In a second step

th
e

process should ask how often

(percent o
f

time) is a segment

o
u
t

o
f

compliance b
y more than a fixed percent o
f

space. The

results from these queries can b
e presented in graphical form where percent o
f

time is plotted

against percent o
f

space (Figure 2.1). It is arbitrary to treat space first and time second. A
similar diagram could b

e obtained b
y

first computing percent noncompliance in time and then

considering

th
e

cumulative distribution o
f

percent time over space.

9



Figure

2
.1 Illustration o
f

CFD for 1
2

dates

If a segment is generally in compliance with

th
e

criterion, then one expects a high frequency o
f

dates where

th
e

percent

o
u
t

o
f

compliance is low. In this case,

th
e CFD should descend rapidly

from the upper left corner and pass not too fa
r

from the lower left corner and then proceed to the

lower right corner. The trace in Figure

2
.1 shows

th
e

typical hyperbolic shape o
f

th
e CFD. The

closer

th
e CFD passes to th
e

origin (lower

le
ft

corner),

th
e

better

th
e

compliance o
f

th
e

segment

being assessed. A
s

th
e CFD moves away from

th
e

origin, a higher frequency o
f

large percents o
f

space out o
f

compliance is indicated.

Formulating a
n Estimate o
f

the CFD.

The algorithm developed b
y CBP

fo
r

estimating

th
e CFD is most easily described a
s a series o
f

steps. These steps a
re given in bullet form to provide a frame work fo
r

the overall approach.

The quickly defined framework is followed b
y

a simple example. This in turn is followed b
y

more detailed discussion o
f

each step.

1
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The steps:
1
.

Collect data from a spatial network o
f

locations o
n a series o
f

dates in a three year assessment

period .

2
.

For each date, interpolate

th
e

data

f
o

r

th
e

entire system ( e
.

g
.

mainstem bay) to obtain

estimates o
f

water quality in a grid o
f

interpolation cells.

3
.

For each interpolation cell assess whether o
r

not th
e

criterion is exceeded.

4
.

For each assessment unit ( e
.

g
.

segment), compute

th
e

percentage o
f

interpolator cells that

exceed th
e

criterion a
s

a
n

estimate o
f

th
e

percent o
f

area that exceeds th
e

criterion.

5
.

Rank

th
e

percent o
f

area estimates
f
o

r

th
e

s
e

t

o
f

a
ll sample days in th
e

assessment period from

largest to smallest and sequentially assign to these ranked percents a value that estimates percent

o
f

time.

6
.

Plot

th
e

paired percent o
f

time and percent o
f

area data o
n a graph with percent o
f

area o
n

th
e

abscissa and percent o
f

time o
n

th
e

ordinate. The resulting curve is th
e

Cumulative

Frequency Diagram.

7
.

Compare

th
e CFD from a segment being assessed to a reference CFD. I
f

a
t

any point

th
e

assessment CFD exceeds

th
e

reference CFD, that

is
,

a given level o
f

spatial noncompliance

occurs more often than is allowed, then

th
e

segment is listed a
s

failing to meet

it
's designated

use.

Simple Numerical CFD Example:

For this example, assume a segment

f
o
r

which

th
e

interpolation grid is 4 cells b
y 4 cells. In

reality,

th
e

number o
f

grid cells is much larger. Also

le
t

data b
e collected o
n 5 dates. Typically

data would b
e monthly

f
o
r

a total o
f

3
6

dates. Let

th
e

criterion threshold

f
o
r

this fictitious water

quality parameter b
e

3
.

In what follows, you will find a
n illustration o
f

the steps o
f

computing

th
e

CFD f
o
r

these simplified constraints. The three columns o
f

th
e

next page show th
e

first

three steps. Column 1 shows fictional data

f
o
r

five dates

f
o
r

five fixed locations in a 2

dimensional grid. Column 2 shows a fictional interpolation o
f

these data to cover

th
e

entire grid.

Column 3 shows

th
e

compliance status o
f

each cell in th
e

grid where 1 indicates noncompliance

and 0 indicates compliance.

1
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Step 1
.

Collect data a
t

known locations.

date 1

3 3

5

2 1

date2

1 1

3

1 1

date3

4 2

2

1 1

date4

1 4

2

4 1

date5

1 3

2

1 1

Step 2
.

Interpolate

th
e data

to grid cells.

date 1

3 4 5 3

4 4 5 2

3 3 4 1

2 3 3 1

date2

1 2 3 1

2 2 3 2

1 3 2 1

1 1 1 1

date3

4 3 2 2

3 2 2 1

2 2 1 1

1 1 1 1

date4

1 2 3 4

2 2 2 3

3 3 2 1

4 3 1 1

date5

1 2 3 3

2 2 2 2

1 1 1 1

1 1 1 1

Step 3
.

Determine

compliance status o
f

each

cell.

date 1

1 1 1 1

1 1 1 0

1 1 1 0

0 1 1 0

date2

0 0 1 0

0 0 1 0

0 1 0 0

0 0 0 0

date3

1 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

date4

0 0 1 1

0 0 0 1

1 1 0 0

1 1 0 0

date5

0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

1
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Step 4
:

Percent compliance b
y date.

sample date percent

space

date 1 75.00%

date 2 18.75%

date 3 18.75%

date 4 43.75%

date 5 12.50%

Step 5
.

Rank

th
e

percent o
f

space values and assign percent o
f

time = (100*

R
/( M+1.0)),

where R is rank and M is total number o
f

dates.

sample date ranked

percent

space

cumulative

percent time

date 1 75.00% 16.67

date 4 43.75% 33.33

date 2 18.75% 50.00

date 3 18.75% 66.67

date 5 12.50% 83.33

Steps 6 and 7
:

The plot o
f

the CFD and

th
e

comparison to th
e

reference curve

a
re shown

in Figure 2.2. For this hypothetical case

th
e

assessment area would b
e judged in

noncompliance. For a percent area o
f

18.75,

th
e

allowable frequency o
n

th
e

reference

curve is about 53%. That

is
,

18.75% o
f

th
e

segment area should

n
o
t

b
e

o
u
t

o
f

compliance

more that 53% o
f

th
e

time. For date 3
,

the estimated frequency o
f

18.75%

noncompliance is 66.67%. Thus the frequency o
f

18.75% o
f

space out o
f

compliance is

in excess o
f

th
e 53% allowed. The reference curve is exceeded

f
o
r

dates 4 and 1 a
s

well.

Note: in this cumulative distribution framework,

th
e actual date is n
o
t

relevant. One

should

n
o
t

infer that noncompliance occurred o
n

that date if th
e

data point associated

with a date falls above the reference. Date is being used here a
s

a label fo
r

each

coordinate pair.

1
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Figure

2
.2 Graphical representation o
f

CFD from

th
e

above example (red, '+') with hypothetical

reference curve (green, smooth).

Defining the CFD Ideal

A
s

defined above,

th
e CFD is a data driven formulation. But

th
e

data used to formulate

the CFD are a sample o
f

points taken from a population. Defining the CFD becomes

complex when one considers

th
e many different levels

f
o
r

which it might b
e defined. A
t

one level,

th
e CFD might b
e defined based o
n

th
e

true state o
f

a segment. Imagine that

th
e

state o
f

a segment could b
e frozen

f
o
r

sufficient time to permit deployment o
f

a
n

analog sampler (that is one that measures water quality continuously rather than in

discrete samples) to assess

th
e

percent o
f

area

o
u
t

o
f

compliance a
t

that instant. Now

stretch that imagination one step further to relax

th
e

condition that

th
e

segment b
e frozen

and allow that these analog measurements o
f

percent o
f

area

o
u
t

o
f

compliance b
e

determined continuously in time. With this information, a determination o
f

th
e CFD

f
o
r

th
e

true state o
f

th
e

segment is possible. While

th
e

information needed to construct

th
e

ideal CFD is not obtainable, it is important to ask how well the CFD based o
n obtainable

data represents this ideal (see also Section

5
)
.

Is a data driven CFD consistent

f
o
r

th
e

ideal CFD in th
e

statistical sense? Loosely speaking, consistency implies that

th
e

data

driven CFD should

g
e
t

closer to th
e

ideal CFD a
s more data

a
re used. I
s

th
e

data driven

1
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CFD unbiased

f
o

r

th
e

ideal CFD? Unbiasedness implies that even with small amounts o
f

data,

th
e

data driven CFD o
n average covers

th
e

ideal CFD.

One might argue that if both

th
e

assessment CFD and

th
e

reference CFD

a
re data driven,

then it is not important

f
o

r

th
e CFD to approximate

th
e

ideal. Even

s
o

,

it is important to

understand
th

e
behavior o

f

th
e CFD a
s a function o
f

samples size and

th
e

relative

temporal and spatial contributions to th
e

variance in th
e

water quality parameter. If th
e

curve changes shape a
s a more data

a
re used, this could result in unfair comparisons

between assessment and reference regions. In Section 4
,

statistical properties f
o

r

both

types o
f

reference curves

a
re evaluated further.

Defining Reference Curves

Two approaches to defining

th
e

reference curve

a
re being considered. One is a

biologically based definition. The idea is to identify appropriate reference regions with

healthy biological indicators and compute

th
e

reference CFD

f
o
r

these regions. For

example, healthy benthic IBI scores might b
e used a
s

indicators o
f

adequate bottom

dissolved oxygen. Thus after stratifying b
y

salinity zone and perhaps other factors, a

series o
f

dissolved oxygen reference CDF curves could b
e computed from

th
e

existing

20+ year monitoring data base. When it is not possible to establish a reference condition

some more arbitrary device must b
e employed. Alternatives

a
re discussed in Section 4.0.

Discussion o
f

Each Step

Step 1 - data collection. One o
f

th
e

advantages o
f

th
e CFD approach is that it will

accommodate a variety o
f

input data and still arrive a
t

th
e

same assessment endpoint.

Data collection methods currently in place include:

fi
x station data, cruise track data,

continuous monitor data, aircraft flight path data, and satellite imagery data. Because o
f

th
e

interpolation step,

a
ll

o
f

these data can b
e used (and potentially combined) with

varying degrees o
f

success to estimate

th
e

total spatial ( to th
e

limit o
f

interpolator pixel

size) distribution o
f

a water quality constituent. A
s

noted above, one could construct this

process b
y reversing

th
e

roles o
f

time and space. That

is
,

first interpolate over time and

then build a cumulative distribution in space. In theory it is a
n

abitrary choice to first

standardize

th
e

data over space b
y

interpolation and then construct

th
e

cumulative

distribution in time. However, in practice, there is a greater diversity o
f

sampling

designs over space and therefore it is th
e

sampling in th
e

spatial dimension more than

th
e

temporal that creates many types o
f

data that must b
e forced to a common currency.

Step 2 - interpolation. Interpolation is th
e

step that puts data collected a
t

various spatial

intensities o
n a common footing. O
n

th
e

one hand, this is advantageous because data

collected a
t

many spatial intensities

a
re available

f
o
r

th
e

assessment process. O
n

th
e

other hand, it can b
e

misleading to accept interpolated surfaces from different data

sources a
s

equivalent without qualifying each interpolation with a measure o
f

th
e

estimation error that is associated with each type o
f

data. Clearly a
n interpolation based

o
n hundreds o
f

points per segment (such a
s

cruise track data) will more accurately reflect

th
e

true noncompliance percent when compared to a
n

interpolation based o
n

two o
r

three

1
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points per segment (such a fixed station data). O
f

th
e various types o
f

interpolation

algorithms available,

th
e

method proposed

f
o

r

this assessment is kriging. Kriging offers

the best available approach

fo
r

the estimation error associated with interpolation.

Step 3 - pointwise compliance. Determining

th
e

percent o
f

compliance o
f

each cell

from each interpolation would seem to b
e a simple step. I
f

th
e

estimated value

f
o

r

a cell

exceeds

th
e

criterion then that cell is out o
f

compliance.

While interpolation allows f
o

r

a standardization o
f

many types o
f

data, pointwise

compliance allows

f
o

r

standardization o
f

many criteria. Because compliance is

determined a
t

points in time and space, it is possible to vary

th
e

compliance criteria in

time and space. I
f different levels o
f

a water quality constituent a
re acceptable in

different seasons, then

th
e

criterion can vary b
y season. It is possible to implement

different criteria over space

f
o

r

a segment that bridges oligohaline and mesohaline

salinity regimes. It would even b
e possible to le
t

th
e

criterion b
e a continuous function o
f

some ancillary variable such a
s

temperature o
r

salinity.

A
ll

that is required is that

th
e

final determination b
e

y
e
s

o
r

n
o

f
o
r

each interpolator cell.

Even

th
e

simplicity o
f

this concept becomes diminished when issues o
f

interpolation

error

a
re considered. Consider

th
e

assessment o
f

two interpolator cells from a
n

interpolation based o
n

cruise track data. One cell near
th

e
cruise track has a

n estimated

value is 4 and a standard error o
f

0.1. A second cell

f
a
r

from

th
e

cruise track has a
n

estimated value o
f

4 and a standard error o
f

1.0. If th
e

criterion were 3.0, it is fairly

certain that

th
e

first cell represents exceedance. It is much less certain that

th
e

second

cell represents exceedance. In th
e

simple assessment o
f

non-compliance, they count

th
e

same.

Step 4 - percent non-compliance in space. Computing a percentage should also b
e a

simple step. The estimate is simply 100 times

th
e

number o
f

cells

o
u
t

o
f

compliance

divided b
y

th
e

total number o
f

cells. A
s

a rule,

th
e

uncertainty o
f

a binary process can b
e

modeled using a binomial distribution. However,

th
e

issue o
f

uncertainty described
f
o
r

step 3 propagates into computing the percent o
f

compliance

fo
r

a segment. Add to that

th
e

fact that estimated values f
o
r

interpolator cells have a complex dependence structure

which rules

o
u
t

a simple binomial model and

th
e

rules governing

th
e

uncertainty o
f

this

step

a
re also complex. The number o
f

interpolator cells, N
,

is relatively constant and

under a
n independent binomial model

th
e

variance o
f

th
e

proportion o
f

cells

n
o
t

in

compliance, p
,

would b
e (

p
)
(

1
-

p
)/

N
.

Intuitively, one expects the variance o
f

p to

decrease a
s

th
e

number o
f

data points that feeds

th
e

interpolation increases. This

expectation has been confirmed b
y

simulation,

b
u
t

th
e

mathematical tools

f
o
r

modeling

this propagation o
f

error

a
re

y
e
t

to b
e developed.

Step 5 - Percent o
f

time. While th
e

percent o
f

space coordinate o
f

the CFD has simple

interpretation o
f

th
e

percent o
f

th
e

segment out o
f

compliance o
n a given date,

th
e

percent

o
f

time coordinate is n
o
t

simply

th
e percent o
f

time out o
f

compliance a
t

a given point.

Instead

th
e

percent o
f

time coordinate has a
n

interpretation similar to that o
f

a cumulative

distribution function. The percent o
f

time coordinate is th
e

percent o
f

time that th
e

1
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associated spatial percent o
f

noncompliance is exceeded. For example, if th
e

(percent

space, percent time) coordinates

f
o

r

a point o
n

th
e CFD

a
re (90,10), one would say that

the spatial percent o
f

noncompliance is greater than o
r

equal to 90% about 10% o
f

th
e

time.

This step is very similar to computing a
n empirical distribution function which is a
n

estimator o
f

a cumulative distribution function. Because o
f

this similarity, one

immediately thinks o
f

statistical inference tools associated with empirical distribution

functions, such a
s

th
e

Kolmogorov- Smirnov, Shapiro- Wilk, Anderson- Darling, o
r

Cramer-von Mises, a
s

candidates

f
o

r

inference about

th
e CFD. These procedures model

uncertainty a
s

a function o
f

sample size only; in this case

th
e

number o
f

sample dates.

The fact that it does not incorporate th
e

uncertainty discussed th
e

previous steps seems

unsatisfactory.

A quick review o
f

probability plotting will reveal several methods o
n estimating

th
e

percent o
f

time coordinate in step 5
.

Formulae found in th
e

literature include: ( R
/

N), (R -

0.5) / (N -

1
)
.

and (R - 0.375) / (N + 0.5), where R is rank and N is sample size. These

generally fall in to a family o
f

given b
y

(R - A)/( N - 2
A + 1
)

fo
r

various values o
f

A
.

They

a
re approximately equal,

b
u
t

th
e

choice should b
e fixed

f
o
r

a rule.

6
.

Plotting the CFD. Even

th
e

plotting o
f

th
e

points is subject to variation, although

these variations are somewhat minor compared to th
e

larger issue o
f

assessing the

uncertainty o
f

th
e

assessment curve. The simple approach used in th
e

figures above is to

connect

th
e

points b
y

line segments. In th
e

statistical literature, it is more common to u
s
e

a step function. I
f

th
e

graph represents a
n empirical distribution function, each horizontal

line segment is closed o
n

th
e

left and open o
n

th
e

right. Because

th
e CFD is a
n inversion

o
f

a
n EDF it would b
e appropriate

f
o
r

these line segments to b
e closed o
n

th
e

right and

open o
n

th
e

left.

7
.

Comparing the Curves. It is a
t

the point o
f

comparing the assessment curve to the

reference curve that th
e

issue o
f

uncertainty becomes most important. From th
e

preceding discussion it is clear that uncertainty in th
e

assessment curve is a
n

accumulation o
f

uncertainty generated in and propagated through

th
e

preceding 6 steps.

I
f

th
e

reference curve is biologically based, it is derived under

th
e

same system o
f

error

propagation. Developing the statistical algorithms to quantify this uncertainty is

challenging.

Even if th
e

uncertainty can b
e properly quantified,

th
e

issue o
f

who gets

th
e

benefit o
f

doubt due to this uncertainty is a difficult question to resolve. This is a broad sweeping

issue regarding uncertainty in the regulatory process, not a problem specific to th
e CFD

approach. None- the- less, it must b
e

dealt with here a
s

well a
s

elsewhere. One option is

to require that

th
e assessment curve b
e significantly above

th
e reference curve to

establish noncompliance. This option protects

th
e

regulated party from being deemed

o
u
t

o
f

compliance due to random effects, b
u
t

if assessment CFD curves a
re

n
o
t

accurately

1
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determined, it could lead to poor protection o
f

environmental health and designated uses.

A second option is to require that

th
e

assessment curve b
e

significantly below

th
e

reference curve to establish compliance. This results in strong protection o
f

the

environmental resource,

b
u
t

could lead to th
e

regulated party implementing expensive

management actions that

a
re

n
o
t

necessary. Some compromise between these extremes is

needed. The simplest compromise is to ignore variability and just compare

th
e

assessment curve to th
e

reference curve. A
s

long a
s

unbiased estimation is implemented

fo
r

both the assessment curve and the reference curve, this third option will result in

roughly equal numbers o
f

false positive (declaring noncompliance when in fact

compliance exists) and false negative (declaring compliance when in fact noncompliance

exists) results. This offers a balanced approach,

b
u
t

there is n
o mechanism to motivate a

reduction o
f

these false positive and false negative errors

1
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2.2 Data Available and Current Methods

Overview o
f

Types o
f

Data Available

The Chesapeake Bay monitoring program routinely monitors 1
9 directly measured water

quality paramenters a
t

4
9

stations in th
e

mainstem Bay and 9
6

stations in th
e

tidal

tributaries. The Water Quality Monitoring Program began in June 1984 with stations

sampled once each month during

th
e

colder late fall and winter months and twice each

month in th
e

warmer months. A refinement in 1995 reduced

th
e

number o
f

mainstem

monitoring cruises to 1
4

p
e
r

year. " Special" cruises may b
e added to record unique

weather events. The collecting organizations coordinate

th
e

sampling times o
f

their

respective stations, s
o

that data
f
o

r
each sampling event, o

r

" cruise", represents a synoptic

picture o
f

th
e Bay a
t

that point in time. A
t

each station, a hydrographic profile is made

( including water temperature, salinity, and dissolved oxygen) a
t

approximately 1 to 2

meter intervals. Water samples

fo
r

chemical analysis ( e
.

g
., nutrients and chlorophyll) are

collected a
t

th
e

surface and bottom, and a
t

two additional depths depending o
n

th
e

existence and location o
f

a pycnocline (region( s
)

o
f

density discontinuity in th
e

water

column). Correlative data o
n

s
e
a

state and climate

a
re also collected.

In addition, Chesapeake Bay Program partner organizations Maryland Department o
f

Natural Resources and

th
e

Virginia Institute o
f

Marine Science have recently begun

monitoring using a technology known a
s

data flow. DATAFLOW is a system o
f

shipboard water quality probes that measure spatial position, water depth, water

temperature, salinity, dissolved oxygen, turbidity (clarity o
f

th
e
water), and chlorophyll

( indicator o
f

plankton concentrations) from a flow-through stream o
f

water collected near

th
e

water body’s surface. This system allows data to b
e collected rapidly (approximately

every 4 seconds) and while

th
e

boat is traveling a
t

speeds u
p

to 2
0 knots.
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Figure 2.3. Map o
f

th
e

tidal water quality monitoring stations
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In 2005,

th
e MDDNR Water Quality Mapping Program covered 1
6 Chesapeake Bay,

Coastal Bay and Tributary systems. The

S
t.

Mary's, Patuxent, West, Rhode, South,

Middle, Bush, Gunpowder, Chester, Eastern Bay, Miles/ Wye, Little Choptank,

Chicamacomico and Transquaking Rivers will b
e mapped, a
s

well a
s

Fishing Bay and

th
e

Maryland Coastal Bays. In Virginia, dataflow data

a
re available

f
o

r

th
e

Piankatank,

York, Pamunkey and Mataponi Rivers.

Beginning in 1990, Chlorophyll- a concentrations were measured over

th
e

mainstem

Chesapeake using aircraft remote sensing. From 1990- 1995, the instrument used

fo
r

this

study was

th
e

Ocean Data Acquisition System (ODAS) which had three radiometers

measuring water leaving radiance a
t

460, 490 and 520 nm. In 1996, a
n additional

instrument was added,

th
e SeaWiFS Aircraft Simulator (SAS

II
)
. SAS II has sensors a
t

seen wavebands which improves detection o
f

Chlorophyll in highly turbid areas. Since

1990, 25- 3
0 flights per year have been made during the most productive times o
f

year.

The data described above and additional information can b
e obtained from:

www. chesapekebay.

n
e
t

mddnr.chesapeakebay. net/ eyesonthebay/ index. cfm

www2. vims.edu/ vecos/

Description o
f

the current nearest neighbor/ IDW interpolator

The current Chesapeake Bay Interpolator is a cell- based interpolator. Water quality

predictions

f
o
r

each cell location

a
re computed b
y

averaging
th

e
nearest “ n

”

neighboring

water quality measurements, where “ n
”

is normally 4
,

but this number is adjustable.

Each neighbor included in th
e

average is weighted b
y

th
e

inverse o
f

th
e

square o
f

Euclidean distance to th
e

prediction cell (IDW). Cell size in th
e

Chesapeake Bay was

chosen to b
e 1km (east- west) x 1km (north-south) x 1
m (vertical), with columns o
f

cells

extending from surface to th
e

bottom o
f

th
e

water column, thus representing

th
e

3
-

dimensional volume a
s

a group o
f

equal sized cells extending throughout

th
e

volume.

The tributaries a
re represented b
y

various sized cells depending o
n

th
e

geometry o
f

th
e

tributary, since

th
e

narrow upstream portions o
f

th
e

rivers require smaller cells to

accurately model

th
e

river’s dimensions. This configuration results in a total o
f

51,839

cells b
y

depth

f
o
r

th
e

mainstem Chesapeake Bay (segments CB1TF-CB8PH), and a total

o
f

238,669 cells b
y depth

fo
r

a
ll

7
7 segments which comprise

th
e mainstem Bay and tidal

tributaries.

The Chesapeake Bay Interpolator is unique in th
e way it computes values in 3

dimensions. The interpolator code is optimized to compute concentration values, which

closely reflect

th
e

physics o
f

stratified water bodies, such a
s Chesapeake Bay. The Bay is

very shallow compared to it
s width o
r

length; hence water quality varies much more

vertically than horizontally. The Chesapeake Bay Interpolator uses a vertical filter to

select

th
e

vertical range o
f

data that

a
re used in each calculation. For instance, to compute

a model cell value a
t

5m deep, monitoring data a
t

5m deep

a
re preferred. I
f fewer than n

(typically 4
)

monitoring data values are found a
t

the preferred depth, th
e

depth window is

widened to search u
p

to d (normally

+
/- 2m) meters above and below

th
e

preferred depth,

with

th
e window being widened in 0.5m increments until n monitoring values have been
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found

f
o

r

th
e computation. The smallest acceptable n value is selectable b
y

th
e

user. If

fewer than n values

a
re located, a missing value (normally a – 9
)

is calculated

f
o

r

that cell.

A second search radius filter is implemented to limit

th
e

horizontal distance o
f

monitoring data from

th
e

cell being computed. Data points outside

th
e

radius selected b
y

th
e

user (normally 25,000m)

a
re excluded from calculation. This filter is included s
o

that

only data that

a
re near

th
e

location being interpolated

a
re used.

In this version o
f

th
e

Interpolator, Segment and Region filters have been added.

Segments a
re geographic limits f
o

r

th
e

interpolator model. For instance, th
e

Main Bay is

composed o
f

8 segments (CB1TF, CB2OH, …
,

CB8PH). The tributaries

a
re composed o
f

7
7 additional segments, using

th
e CBP 2003 segmentation. These segments divide

th
e

Bay into geographic areas that have somewhat homogeneous environmental conditions.

This segmentation also provides a means

fo
r

reporting results o
n a segment basis, which

can show more localized changes compared to th
e

whole Bay ecosystem.

Segment and bathymetry information use b
y

th
e

interpolator is stored in auxiliary files.

Segment information allows

th
e

interpolator to report results o
n a segment basis which

can show more localized changes compared to the whole Bay ecosystem. These segment

and bathymetry files have been created

f
o
r

th
e

main bay and

a
ll

o
f

th
e

larger tributaries.

The CBP segmentation scheme was replicated in these files b
y

partitioning and coding

th
e

interpolator cells that fall within each segment.

The interpolator also identifies

th
e

geographic boundary that limits which monitoring

station data

a
re included in interpolation

f
o
r

a given segment through a region file. Use o
f

data regions ensures that

th
e

interpolator does

n
o
t

“ reach across land” to obtain data from

a
n adjacent river which would give erroneous results. B
y

using data regions, each

segment o
f

cells can b
e computed from their individual subset o
f

monitoring data. Each

adjacent data region should overlap b
y some amount s
o

that there is a continuous

gradient, and

n
o
t

a seam, across segment boundaries.

Current Implementation o
f

CFD

The Chesapeake Bay Program has initiated implementation o
f

th
e CFD a
s

a
n assessment

tool. The Criteria Assessment Protocols (CAP) workgroup was formed in th
e

fall o
f

2005 to develop detailed procedures

fo
r

implementing criteria assessment. This

workgroup has developed and implemented procedures that use

th
e CFD process and

conducted a CFD evaluation o
f

dissolved oxygen

f
o
r

many designated assessment units.

The CFD methodology was first applied in th
e

Chesapeake Bay

f
o
r

th
e

most recent

listing cycle which was completed in th
e

Spring o
f

2006 and was based o
n data collected

over

th
e

period 2002 through 2004. CFDs were developed and utilized primarily

f
o
r

th
e

dissolved oxygen (DO) open- and deep- water monthly mean criteria because there were

insufficient data collected to assess

th
e

higher-frequency DO criteria components. The

clarity criteria were

n
o
t

assessed based o
n

th
e CFD because there were few systems in

which there was sufficient data

f
o
r

a
n assessment. Chlorophyll criteria were not available

from

th
e

Chlorophyll criteria team in time to implement a chlorophyll assessment.
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In general,

th
e CFD analysis indicated that most o
f

th
e Bay waters failed one o
r

more o
f

th
e

open-water o
r

deep- water DO criteria components. However, there were also many

tributaries in which

a
ll

o
f

the DO criteria assessed indicated attainment. Thus in this

initial application,

th
e CFD method did appear to distinguish between impaired and

unimpaired systems in a manner that is consistent with

th
e

expectations o
f

th
e many

stakeholders in th
e CAP workgroup.

In th
e

2006 application o
f

th
e

assessment methodology, there were many details that

required resolution in order to fully implement the methodology. Procedures generally

followed th
e

theoretical description a
s

described in Section 2.1, b
u
t

some details were

modified to address unforeseen complications. The following describes some o
f

those

details.

In general, data were obtained from

th
e CBP CIMS data base and parameters included

date, location, depth, salinity, temperature and the water quality parameter being

assessed. Some State data were also incorporated and those data were obtained directly

from

th
e

relevant State. Once

a
ll

th
e

data were compiled, they were assigned to a time

period based o
n

th
e

sample date. Fixed-station data a
re normally collected during a

monitoring cruise that covers

th
e

entire tidal Chesapeake Bay over several days.

However, in order to provide a “snapshot” in water quality,

th
e

data collected within a

cruise

a
re assumed to b
e contemporaneous in order to perform a single spatial

interpolation. For any data not associated with a cruise, a cruise number is assigned

representing

th
e

closest cruise in time to th
e

collection o
f

each datum. Co-located data

points in th
e

same cruise were averaged.

The assessment procedure requires assessment over large areas rather than a
t

points in

space. Spatial interpolation using

th
e CBP IDW interpolator was performed

f
o
r

each

water- quality criteria parameter

f
o
r

each cruise. Clarity and surface chlorophyll were

interpolated in th
e

two horizontal dimensions using inverse distance squared weighting.

Dissolved oxygen was first linearly interpolated in th
e

vertical dimension within each

column o
f

data beginning a
t

0
.5 meters and continuing a
t

one meter intervals,
n
o
t

to
exceed th

e

deepest observation in that column. Each depth was then interpolated

horizontally using inverse distance squared weighting. Data regions were specified
f
o
r

each segment in order to prevent

th
e

interpolation algorithm from using data points in

neighboring tributaries.

Designated uses in th
e

Chesapeake Bay

a
re defined vertically in order separate stable

water layers that have differing criteria levels

f
o
r

dissolved oxygen. The surface layer

(open water) is that layer defined to b
e above

th
e

pycnocline and thus exposed to th
e

atmosphere. The middle layer (deep water) is defined to b
e

th
e

layer between

th
e

upper

and lower pycnocline. And th
e

lower layer ( deep channel) is defined to b
e

th
e

layer

below

th
e

pycnocline. Given that

th
e

pycnocline is dynamic and moves u
p and down with

each monitoring cruise,

th
e

designated use o
f

each grid cell must also b
e defined based o
n

th
e

available data

f
o
r

each cruise.

The pycnocline is defined b
y

th
e

water density gradient over depth. Temperature and

salinity are used to calculate density, which in turn is used to calculate pycnocline

boundaries. Density is calculated using

th
e

method described

in
:

Algorithms

f
o
r

Computation o
f

Fundamental Properties o
f

Seawater (Endorsed b
y UNESCO/ SCOR/
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ICES/ IAPSO Joint Panel o
n Oceanographic Tables and Standards and SCOR Working

Group

5
1
.

Fofonoff, N P
;

Millard, R C

J
r
.

UNESCO technical papers in marine science.

Paris , no. 44, pp. 53. 1983). For each column o
f

temperature and salinity data,

th
e

existence o
f

th
e

upper and lower pycnocline boundary is determined b
y

looking

f
o

r

th
e

shallowest robust vertical change in density o
f

0
.1

k
g

/

m3/ m

f
o

r

th
e

upper boundary and

deepest change o
f

0
.2

k
g

/

m3/m

f
o

r

th
e

lower boundary. T
o

b
e considered robust,

th
e

density gradient must not reverse direction a
t

th
e

next measurement and must b
e

accompanied b
y a change in salinity, not just temperature.

The depths to th
e

upper pycnocline boundary, where detected, and th
e

fraction o
f

th
e

water column below

th
e

lower boundary

a
re interpolated in two dimensions. If n
o lower

boundary was detected

th
e

fraction was considered to b
e zero. The depth to th
e

upper

pycnocline boundary tends to b
e

stable across horizontal space and s
o

spatial definition

o
f

that boundary using interpolation generally worked well. However, interpolation o
f

the

lower boundary is more complicated because

th
e

results can conflict with

th
e upper

boundary definition o
r

with

th
e

actual bathymetry o
f

th
e

Bay. A
s

a result, interpolation o
f

th
e

lower boundary was performed based o
n “ fraction o
f

water column depth”. In that

way,

th
e

constraints o
f

th
e

upper pycnocline boundary definition and

th
e

actual depth

were imposed and errors related to boundary conflicts were eliminated.

Assessments were performed based o
n

criteria specific averaging periods. The

instantaneous assessment

f
o
r

deep channel dissolved oxygen was evaluated using

th
e

individual cruise interpolations. All monthly assessments were based o
n monthly

averages o
f

interpolated data sets. T
o

calculate

th
e

monthly averages, each interpolated

cruise within a month was averaged o
n a point- by-point basis. Generally, there were 2

cruises

p
e
r

month in th
e

warmer months and 1 cruise per month in th
e

cooler months.

Spatial violation rates

a
re calculated

f
o
r

each temporally aggregated interpolation in a
n

assessment period. For example,

f
o
r

a three-year summeropen-water dissolved oxygen

assessment, the twelve monthly average interpolations representing

th
e

four summer

months over three years were used.
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3
.

Protocol f
o

r

Interpolating Water Quality

The CFD approach uses

th
e

proportion o
f

space in attainment in any given month

estimated using a
n

approach based o
n

a statistical model. The current method uses data

collected in a specific month a
t

a

s
e

t

o
f

sampling locations within

th
e

segment o
f

interest

to estimate
th

e
parameters o

f

th
e

model. The estimated model is then used to interpolate

likely values a
t

unsampled locations, specifically a
t

a

s
e

t

o
f

prediction locations arranged

in a grid over

th
e

segment. The predictions thus obtained

a
re used to calculate

th
e

proportion o
f

space in compliance that month. The current estimation procedure

fo
r

obtaining predicted values is Inverse Distance Weighting (IDW), a non-statistical spatial

interpolator that uses

th
e

observed data to calculate a weighted average a
s a predicted

value

f
o

r

each location o
n

th
e

prediction grid. The method calculates

th
e

weight

associated with a given observation a
s

th
e

inverse o
f

th
e

square o
f

th
e

distance between

the prediction location and the observation.

The panel considered several interpolation methods in addition to IDW. O
f

these, kriging

methods emerged a
s a principal alternative approach

f
o
r

populating

th
e grid o
f

prediction

locations. Non- parametric methods were also considered. These include Loess regression

o
r

cubic spline methods. These approaches could b
e advantageous in that they are

statistical methods that provide levels o
f

error,

b
u
t

panel analyses and deliberations have

been insufficient to provide definitive statements o
n

this class o
f

methods. Table

3
.2

which appears in Section

3
.3 summarizes our determinations.

3
.1 Kriging Overview

Kriging is a spatial interpolation technique that arose out o
f

th
e

field o
f

geostatistics, a

subfield o
f

statistics that deals with the analysis o
f

spatial data. Kriging and the field o
f

geostatistics has been employed in a wide variety o
f

environmental applications and is

generally accepted a
s

a method

f
o
r

performing statistically optimal spatial interpolations

(Cressie 1991, Schabenberger and Gotway 2004, Diggle and Ribeiro 2006). Applications

o
f

kriging in water related research can b
e found in (Kitanidis 1997, Wang and Liu

2005, Ouyang e
t

a
l. 2006). References o
n kriging methodology, geostatistics, and their

related statistical development can b
e found in (Cressie 1991, Diggle e
t

a
l. 1998,

Schabenberger and Gotway 2004, Diggle and Ribeiro 2006).

Kriging can equivalently b
e formulated in terms o
f

a general linear regression model

Y ( s
)

= _
0 + _
1 X1( s
)

· · · + _
p Xp( s
)

+ _
(

s
)

( 1
)

with s representing a generic spatial location vector (usually 2
-

D
)

assumed to vary

continuously over some domain o
f

interest, Y
(

s
)

th
e

outcome o
f

interest measured a
t

s
,

X
1
(

s
)
,

. . . ,Xp( s
)

potential covariates indexed b
y

location s
,

and their associated regression

effects

_
1
,

. . . ,

_
p
.

Note that covariates must b
e known a
t

every prediction location. The

elements o
f

th
e

spatial vector s can b
e used a
s covariates

fo
r

modeling spatial trends. On

th
e

other hand water quality measures such a
s

salinity which may have a strong

association with

th
e

outcome o
f

interest, is o
f

limited value a
s

a covariate because it is

n
o
t

known a
t

a
ll prediction locations. The uncertainty in this regression relationship is
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modeled with

th
e random error term _
(

s
)

assumed to have zero mean and constant

variance. Spatial data like the type sampled in th
e Chesapeake Bay water- quality criteria

assessments often exhibit a property known a
s

(positive) spatial dependence,

observations closer together

a
re more similar than those further away. This property is

accounted

f
o

r

in model ( 1
)

b
y

allowing _
(

s
)

to have a spatial correlation structure.

Some further specifics o
n _( s
)

a
re warranted. Common distributional assumptions o
n

_( s
)

include normality o
r

log-normality, although kriging can b
e performed based o
n

other statistical distributions and data transformations (Christenson e
t

a
l. 2001). The

spatial correlation in _( s
)

is represented b
y

positive definite functions. These functions

can b
e assumed isotropic where correlation decay depends just o
n distance, o
r

anisotropic

where correlation decay depends o
n distance and direction. Variograms

a
re another

special type o
f

mathematical function closely related to spatial correlation functions that

can and

a
re more often used to represent spatial correlation. For purposes here and in

many kriging applications, variograms and spatial correlation functions provide

equivalent representations o
f

spatial structure. For consistency in what follows only

th
e

term variogram will b
e used in discussions o
f

spatial structure.

While there is considerable flexibility in implementing

th
e

error structure o
f

a kriging

model, it is possible to generalize somewhat with respect to th
e

error structure o
f

Chesapeake Bay water quality data. O
f

th
e

three water quality parameters being

assessed, chlorophyll and clarity measures tend to follow the log-normal distribution and

dissolved oxygen is reasonably approximated b
y

th
e

normal distribution. The horizontal

decay rate o
f

spatial correlation does not tend to b
e

directionally dependent. Thus if th
e

bay is viewed a
s

a composite o
f

horizontal layers, isotropic variograms

a
re appropriate

f
o
r

kriging each layer. In a vertical direction, water quality

c
a
n

change rapidly and thus

spatial correlation can decay over a short distance. A 3
- D interpolation procedure would

benefit from use o
f

a
n anisotropic variogram in order to differentiate

th
e

vertical

correlation decay from

th
e

horizontal correlation decay.

Note, in th
e

literature model ( 1
)

is referred to a
s

a universal kriging model. When

covariates (

th
e

X’s)

a
re

n
o
t

considered to influence interpolation o
f Y

th
e

right hand side

o
f

model ( 1
)

contains just the constant term _
0

and _(

s
)
.

The resulting model is

referred to a
s

th
e

ordinary kriging model. When

th
e

spatial structure (variogram)

f
o
r

model ( 1
)

is known, statistically optimal predictions

f
o
r

th
e

variable Y a
t

unsampled

locations (outside o
f

estimation o
f

possible regression effects) can b
e derived using

standard statistical principles. The optimality criteria results in spatial predictions that

a
re

linear in th
e

data, statistically unbiased, and minimize mean squared prediction error,

hence referred to a
s

best linear unbiased predictions (BLUPs). The minimized mean

squared prediction error is also taken a
s

a measure o
f

prediction uncertainty. In practice,

however, spatial structure o
f

th
e

data is unknown,

th
e

estimation o
f

which

v
ia

th
e

variogram function is cornerstone to kriging applications.

T
o demonstrate

le
t

{ y
(

s
1
)
,

. . . , y
(

sn)} represent a

s
e
t

o
f

spatial data,

f
o
r

example a water-

quality parameter such a
s

dissolved oxygen sampled a
t

a

s
e
t

o
f

n spatial locations

s
1
,

. . . ,

s
n
.

Assume this data to b
e a realization o
f

th
e

ordinary kriging version o
f

model (

1
)
.

The

first step in kriging is variogram estimation. There

a
re several methods available, method

o
f

moments and statistical likelihood based being two o
f

the more common,

a
ll

o
f

which
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though

a
re based o
n

th
e sample data { y
(

s
1

)
,

. . . , y
(

sn)}. Without going into detail, this

process ends with a chosen variogram function and

it
s parameter estimation, describing

the shape and strength (rate o
f

decay) o
f

spatial correlation. There is also a determination,

again based o
n

th
e

sampled data, o
f

whether

th
e

spatial structure is isotropic o
r

anisotropic. The estimated variogram is then assumed known and kriged interpolations

and their interpolated uncertainty

a
re computationally straight forward to generate a
t

numerous locations where data were not observed. Accounting

f
o

r

uncertainty in

variogram parameter estimation has commonly been explored using Bayesian methods

(Diggle and Ribeiro 2006).

3
.2 IDW Overview

The inverse distance weighting method that is currently used in th
e CFD approach has

already been described. Hence, this section provides a short review o
f

IDW’s technical

details and a comparison o
f IDW to alternative interpolation methods.

The IDW method is essentially a deterministic, non-statistical approach to interpolating a

two o
r

three dimensional space. A
s

a result it lacks statistical rigor s
o

that estimates o
f

th
e

prediction errors a
re not calculable without additional assumptions. Similar to kriging,

IDW predicts a value ( Y
)

a
t

a
n unobserved site, say a
t

location sˆ

0
,

using a weighted

average o
f

th
e N nearest observed neighbors (N specified b
y

th
e

modeler):

_
==

NiiisYwsY10)()(
ˆ

where th
e

weights, w
i,

a
re inversely related to th
e

distance between locations s
0 and s
i

_=_

_

=

Njjiissdssdw12020),(

),(
,

),(

0
is

s
d

is th
e

Euclidean distance between locations s
0 and

s
i, and the denominator o
f

th
e

weight is to ensure that th
e

weights sum to 1
.

The IDW is a
n

exact interpolator in that th
e

predicted values

f
o
r

observed locations

a
re

th
e

observed values and

th
e maximum and

minimum values o
f

th
e

interpolated surface can occur only a
t

observed sites.

Recent research has compared IDW to other interpolation techniques, most notably

variations in kriging (Table 3.1). The authors found that in some cases kriging was a
t

least a
s good a
n

interpolator a
s IDW and in some instances better. The non-parametric

techniques (splines and similar methods) were not a
s

precise a
s

kriging and IDW. The

method used f
o
r

comparison in virtually a
ll

o
f

th
e

research was some variant o
f

cross-

validation, a method where some data

a
re kept aside and not used in th
e

model estimation

phase and then using

th
e

resulting model to predict values

fo
r

the data kept aside. The

2
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predicted and observed values

a
re then compared and a statistic is calculated that

summarizes

th
e

differences between

th
e

two sets o
f

values (observed and predicted).

None o
f

these studies used datasets with highly irregular edges such a
s

a
re found in th
e

Chesapeake Bay nor

d
id they

u
s
e

any distance metric other than Euclidean distance.

Whether one method is preferable to another in these more difficult situations remains

unexplored.

One final and important issue with IDW is that, a
s

currently used, IDW is a deterministic

method which makes n
o assumptions a
s

to th
e

probability distribution o
f

th
e

data being

interpolated. Hence, it does

n
o
t

allow

f
o

r

estimating prediction errors, i. e
.

it does

n
o
t

allow f
o

r

th
e

possibility o
f

random variation a
t

interpolation sites. A simple question is

whether IDW can b
e recast in the kriging framework given

th
e

similarity in prediction

method (weighted average) and hence

c
a

n

a method b
e found to estimate prediction

errors? The short answer is n
o –

th
e

distance function used b
y IDW, which is a
n

implicit

assumption about

th
e

autocorrelation function in th
e

spatial field, does

n
o
t

meet

th
e

assumptions required

f
o
r

development o
f

a valid variance- covariance matrixdescribing

th
e

spatial covariance. A
s a result, IDW cannot b
e modified to take advantage o
f

th
e

statistical knowledge that has been developed

f
o
r

geostatistical analyses such a
s

kriging.

This does

n
o
t

imply that other approaches to estimating prediction error

a
re also

n
o
t

possible.

A non-parametric approach

fo
r

estimating variance was proposed (Tomczak, 1998) in

which jack- knifing was used to provide error estimates. 95% confidence intervals

f
o
r

th
e

mean were calculated and then compared to th
e

actual observed values. Not surprisingly,

only 65% o
f

th
e

data were captured within their associated confidence interval. The

method appears to have been misapplied –the jackknifing method a
s used estimates the

standard error o
f

th
e mean assuming independent observations. A
s

a result,

th
e

confidence interval is not capturing

th
e

effect o
f

th
e

spatial dependencies nor is it based

o
n

th
e

fact that w
e

a
re predicting a value

f
o
r

th
e

unobserved site rather than estimating a

mean. The development described b
y Tomczak (1998) should b
e explored further and

other alternatives such a
s block bootstrapping

fo
r

variance estimation a
s well.
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Table 3.1. A short

li
s
t

o
f

recent articles comparing

th
e precision o
f IDW to a subset o
f

other possible interpolation methods.

Authors Methods Compared Variables

Manipulated

Conclusions

Kravchenko (2003) Inverse Distance

Weighting (IDW),

Ordinary Kriging

(OK)

spatial structure and

sample grid spacing

IDW better than OK
unless sample sizes

were fairly large

Dille, e
t

a
l.

(2002) IDW, OK, Minimum

Surface Curvature

(MC),Multiquadric

Radial Basis Function

(MUL)

neighborhood size,

spatial structure,

power coefficient in

IDW, sample grid

spacing, quadrat size

No interpolator

appears to b
e more

precise than another.

Sample grid spacing

and quadrat size were

deemed more

important.

Valley, e
t

a
l. (2005) IDW, OK, Non-

parametric Detrend +

Splines

spatial structure,

sample size, quadrat

size

OK tended to b
e more

precise but IDW was

very similar

Lloyd (2005) moving window

Regression (MWR),

IDW, OK, simple

kriging with locally

varying mean (SKlm),

kriging with external

drift (KED)

spatial structure,

sample size

KED and OK best

Reinstorf, e
t

a
l.

( 2005)

IDW, OK, KED +

deterministic

chemical transport

models

single dataset was

analyzed

OK best

Zimmerman, e
t

a
l.

( 1999)

2 types o
f

IDW, UK,

OK
spatial structure,

sampling pattern,

population variance

UK and OK better

than IDW

3
.3 Non-parametric Interpolation Methods

There

a
re many variations o
n

spatial interpolation in addition to kriging and IDW. See

Cressie (1989)

f
o
r

a review. The committee

d
id

n
o
t

have sufficient time to compare

a
ll

models,

b
u
t

CBP in encouraged to continue this research. One promising category o
f

models

a
re

f
o
r

interpolation based o
n non- parametric methods that d
o

n
o
t

rely o
n

measuring and accounting fo
r

spatial autocorrelation. All o
f

the non-parametric

approaches would b
e based o
n

th
e

assumption that

th
e

autocorrelation observed in th
e

data is due to unobserved explanatory variables and hence alternative modeling

approaches

a
re

n
o
t

unreasonable. The particular

s
e
t

w
e mention

a
re

th
e

regression type

analyses with

th
e

locational indices (northings, eastings) used a
s

explanatory variables.

Examples include generalized additive models (Hastie and Tibshirani, 1990), high- order

polynomials (Kutner, Nachtsheim, Neter, and

L
i, 2004), splines (Wahba, 1990), and

locally weighted regression (
“ loess” o
r

“ lowess”, Cleveland and Devlin, 1988). In some

kriging and IDW methods, large- scale trend is modeled relatively smoothly using

2
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locational indices and local smaller-scale variation is modeled using

th
e estimated

autocorrelation in conjunction with

th
e

values o
f

th
e

variable a
t

nearby observed sites.

The nonparametric methods replace estimation o
f

the local variation based o
n correlation

functions with models o
f

th
e

large- scale trend that

a
re less smooth and more responsive

to th
e

spatial variation in th
e

observed data. A visual demonstration is given in Figure

3
.1

which shows a one-dimensional dataset with Y a
s

th
e

variable to b
e predicted and X a
s

th
e

location along

th
e

one dimensional axis. For example, X could b
e distance from

th
e

mouth o
f

a river and Y could b
e chlorophyll a concentration.

Figure 3.1. Bivariate

f
it o
f Y B
y

X
.

Straight line is a linear large- scale trend

f
it ( R
2

=

0.19); th
e

moderately wavy line around th
e

straight line is a

6
th

-

order polynomial f
it (X

enters

th
e

model a
s

X
,

X
2

,

X
3

,

…
,

and X
6

;

R
2

= 0.25); and

th
e

jagged line is a spline

f
it

with a very small bandwidth (neighborhood used in local estimation a
t

each X
;

R
2

=

0.90).

456789Y0102030405060708090X

Linear

FitPolynomial

F
it

Degree=

6Smoothing
Spline Fit, lambda=0.01

One advantage o
f

these approaches is that each o
f

th
e

methods has extensive statistical

research into estimation o
f

model parameters a
s

well a
s

standard errors

f
o
r

those

parameters and

fo
r

predictions a
t

interpolation sites. Another is that the main modeling

decisions

a
re related to bandwidth selection o
r

degree order o
f

polynomial to fi
t. These

decisions can b
e automated b
y

developing rules

f
o
r

roughness o
f

f
it based o
n reduction in

MSE a
s compared to modeling a straight line ( in X). Disadvantages

a
re

th
e

same a
s

f
o
r

kriging,

a
ll model estimation is data dependent which means that

th
e

spatial configuration

and number o
f

sampling sites has a direct influence o
n

th
e

predictions and their error

estimates. In addition, a study done b
y

Laslett (1994) comparing kriging and splines

3
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indicated that

th
e two methods

a
re similar in predictive power

b
u
t

f
o

r

certain sampling

regimes kriging performs better. We recommend more study since

th
e

non-parametric

approaches would b
e easier to implement than kriging.

3
.3 Comparison o
f

Methods

The following describes some o
f

th
e

benefits and potential limitations o
f

kriging in

regards to CBP application with some comparisons to th
e IDW approach towards spatial

interpolation outlined in the previous section. Nonparametric methods

a
re not sufficiently

developed to include in this comparison. A primary benefit o
f

th
e

kriging methodology

compared to IDW is that it is a statistical technique. A
s

such th
e

field o
f

statistics

( including kriging) is designed to make inference from sampled data in th
e

presence o
f

uncertainty and

th
e quantity and quality o
f

th
e sample data

a
re reflected in those

inferences. However, kriging is a less than routine type o
f

statistical analysis and requires

a certain level o
f

statistical expertise to carry

o
u
t

th
e

process. The short description o
n

variogram estimation provided above merely introduces this involved and often

complicated step. This requirement

f
o
r

informed decision making limits

th
e

degree to

which kriging can b
e automated and still maintain

it
s flexibility and optimal properties.

Further issues regarding kriging and CBP applications

a
re listed below.

• Kriging is flexible in that it is based o
n

a
n estimate o
f

th
e

strength o
f

spatial

dependence in th
e

data (variogram). Kriging can consider direction dependent

weighted interpolations (anisotropy) and can include covariates (universal

kriging) to potentially influence interpolations, either simple trends in easting and

northing coordinates o
r

water related measures such a
s

s
e
a

surface temperature

measured b
y

satellite.

• A key feature o
f

a statistical technique like kriging is that a measure o
f

uncertainty (called

th
e

kriged prediction variance) is generated along with kriged

interpolations. Research has been initiated ( i. e
., conditional simulation) to

propagate this interpolation uncertainty through

th
e CFD process

f
o
r

generating

confidence intervals

f
o
r

estimates o
f

attainment.

• Kriging can b
e applied in situations where

th
e

data

a
re sparse, a
s

in CBP fixed

station data, o
r

densely sampled, a
s

in CBP shallow water monitoring. Kriged and

IDW spatial interpolations may very well produce near identical results

fo
r

these

two extreme scenarios. However it is th
e

kriging approach that provides a

statistical model,

th
e

uncertainty o
f

which is influenced b
y

th
e

quantity and

quality o
f

data. Knowledge o
f

interpolation uncertainty is crucial

f
o
r

discriminating

th
e

improved water quality assessment obtained from densely

sampled networks relative to sparsely sampled networks.

A
s

alluded to earlier kriging is a
n advanced statistical technique and like

a
ll such

techniques should b
e

carried

o
u
t

b
y

well trained statistician( s
)

with experience in spatial

3
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o
r

geostatistical methodology and experience analyzing water quality data. Assessing

model

f
it
s

( o
f

th
e

variogram and regression model) and kriging accuracy

v
ia cross

validation and/ o
r

likelihood based criteria should b
e employed routinely.

T
o

further exemplify this point consider kriging

th
e

densely sampled shallow water

monitoring data which is generated b
y

th
e DATAFLOW sampling. In addition to th
e

other technical complexities mentioned within, this spatial sampling design may raise

other issues not immediately recognized b
y untrained users (Deutsch 1984).

For kriging in CBP applications one potential methodological drawback is th
e issue o
f

non- Euclidean distance (Curriero 2006). Current kriging methodology only allows

th
e

use o
f

th
e

straight line Euclidean distance a
s

th
e

measure o
f

proximity. However,

th
e

irregular waterways in the Chesapeake Bay system may very well suggest other non-

standard measures o
f

distance.

F
o
r

example,

th
e

spatial design o
f

th
e

fixed station data

including those in th
e Bay mainstem and tidal tributaries. The straight line Euclidean

distance may very well intersect land particularly in regions containing convoluted

shorelines. There has been research initiated o
n

this topic (Curriero2006, Jensen e
t

a
l.

2006, Ver Hoef e
t

a
l. 2007), however, results are not yet ready

fo
r

universal use.

Three dimensional interpolations ( including depth a
s

th
e

third dimension)

a
re potentially

required

f
o
r

CBP applications. The IDW and kriging methodologies, mathematically

speaking, certainly extend to three dimensions. However

th
e

rapid change o
f

water

quality over depth would lead to significant anisotropies in th
e

application three

dimensional kriging that would complicate this approach

f
a
r

more than

th
e

application o
f

IDW. O
n

th
e

other hand, a simplistic implementation o
f

IDW that does not recognize

th
e

rapid decay o
f

covariance over depth would inappropriately reach across
th

e
pycnocline when choosing nearest neighbors. Clearly

th
e

special properties o
f

water

quality in a highly stratified bay require innovation

f
o
r

3
-

dimensional interpolations.

Another approach would b
e

to apply universal kriging where a third dimension (depth) is
used a

s

a covariate. The

u
s
e

o
f

depth a
s

a
n independent variable is motivated b
y

th
e

observation that often water quality exhibits a predictable trend over depth a
s

f
o
r

example

the trend o
f DO decreasing with increasing depth. T
o include depth a
s a covariate, model

( 1
)

would b
e

written a
s

Y ( s
)

= $0 + $1Depth( s
)

+ g (

s
)
:

A third approach to interpolation in three dimensions is to implement 2
-

D interpolation in

layers. Note that

th
e IDW interpolator currently implemented b
y CBP (Section 2.2)

employs a layered strategy b
y severely restricting (+/- 2m)

th
e

vertical distance that may

b
e searched

f
o
r

nearest neighbors. A similar strategy could b
e implemented using 2
- D

kriging to interpolate

th
e

layers. Which o
f

these approaches is best suited to 3
- D

interpolation

f
o
r

th
e bay will depend o
n

th
e data available and assumptions related to

vertical structure. Full 3
- D kriging interpolation treats

th
e

3rd dimension a
s

a spatial

dimension in the error term g (

s
)
.

The covariate approach requires that the change over

depth b
e

a predictable trend. Interpolation in layers assumes that covariance decays s
o

3
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rapidly over depth that it is adequate to treat

th
e

layers a
s independent entities. Data

sufficiency requirements increase

f
o

r

a
ll approaches when considering three dimensional

interpolations. When data

a
re sparse, again a statistical based approach like kriging

allows this to b
e

reflected in prediction uncertainty.

In many applications, attainment o
r

lack o
f

attainment will b
e

s
o extreme that

th
e

assessment end point is clear even without optimizing

th
e

error estimation o
f

th
e CFD. In

these extreme cases, IDW o
r

kriging simplified

fo
r

automation could b
e sufficient to

support

th
e

attainment ruling without precise quantification o
f

estimation uncertainty.

For these cases,

th
e

customized IDW algorithm that is currently implemented b
y CBP

provides a tool with which to begin testing

th
e CFD assessment procedure, but kriging

simplified

f
o

r

automation may offer some advantages. Kriging can b
e simplified

f
o

r

automation b
y fixing

th
e variogram model to one mathematical form, say exponential,

fo
r

a
ll

applications. With

th
e

variogram model fixed, kriging becomes like IDW in assuming

th
e

same mathematical form

f
o

r

th
e

spatial dependence

f
o

r

a
ll

cases,

b
u
t

it is more

flexible than IDW in that th
e

rate o
f

spatial correlation decay could b
e

allowed to vary

among applications. In addition,

th
e

simplified kriging opens

th
e

door

f
o
r

conditional

simulation, with potential benefits that

a
re discussed in Section 5
.

While a simplified

kriging algorithm offers some advantages, there
a
re also some potential drawbacks.

Because variogram estimation typically entails

u
s
e

o
f

a
n

iterative procedure such a
s

maximum likelihood o
r

non- linear least squares, there is th
e

potential that lack o
f

convergence o
f

these algorithms would b
e problematic

f
o
r

a
n automated implementation

o
f

kriging.

In terms o
f

computing, IDW is available in commercial GIS software, requiring GIS

skills f
o
r

application. Kriging is available in commercial statistical software and also in

th
e

free open source R Statistical Computing Environment (R Development Core Team

2005, Ribeiro and Diggle 2001) and requires programming skills

f
o
r

those software

packages.

In summary, kriging is more sophisticated than IDW,

b
u
t

requires greater expertise

during implementation to fully exploit

it
s full benefit. Table 3.2 provides a comparison

o
f

th
e

capabilities o
f

assessments based simply on: 1
)

percent o
f

samples, 2
)

spatial

interpolation based o
n IDW and 3
)

spatial interpolation based o
n kriging.
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Table

3
.2 –Comparison o
f

th
e

capabilities o
f

methods available

f
o

r

interpreting data

collected fo
r

Chesapeake Bay water- quality criteria assessment.

Attributes Sample-based IDW Kriging

Provides Spatial

Prediction Yes Yes Yes

Provides Prediction

Uncertainty N
o

n
o
t

routine Yes

Uncertainty

f
o

r

CFD N
o

N
o Yes

Deal with Anisotropy No
Possible, but

n
o
t

routine Yes

Can Include Cruise

Track/ Fly over No Yes Yes

Feasibility o
f

3

dimensional

interpolations No Yes

Possible,

b
u
t

not

routine

Feasibility o
f

mainstem-

tributary interpolations No Yes Possible

Inclusion o
f

covariates to

improve prediction N
o

N
o Yes

Predictions o
f

non- linear

functions o
f

predicted

attainment surfaces

P
(

y
>

c
)

N
o

N
o Yes

Level o
f

Sophistication Lowest Low Very High

Automation Yes Yes

Possible,

b
u
t

not

routine

3
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4
.0 CFD Reference Curves

There
a
re several approaches to defining reference curves that

a
re proposed

f
o

r

use in th
e

CFD assessment methodology. One is a biologically based definition and other

approaches
a
re based o
n

a
n

arbitrary allowable frequency (

s
e

e

Section

2
)
.

Here w
e

review these options in greater detail.

4.1. Biological Reference Curves

The idea behind biological reference curves is to identify regions o
f

th
e Bay that have

healthy biological indicators and

a
re thus considered to b
e

in attainment o
f

their

designated use. CFDs would b
e developed

fo
r

these areas in th
e

same way that CFDs

would b
e developed elsewhere,

b
u
t

those curves developed

f
o

r

healthy areas would b
e

considered “reference” curves. For example, healthy benthic IBI scores might b
e used a
s

indicators o
f

adequate bottom dissolved oxygen.

The success o
f

th
e CFD-based assessment will b
e dependent upon decision rules related

to th
e

biological reference curves. These curves represent desired segment-designated

u
s
e

water quality outcomes and reflect sources o
f

acceptable natural variability. The

reference and attainment curves follow

th
e

same general approach in derivation –water

quality data collection, spatial interpolation, comparison to biologically- based water

quality criteria, and combination o
f

space- time attainment data through a CFD.

Therefore,

th
e

biological reference curve allows

f
o
r

implementation o
f

threshold

uncertainty a
s

long a
s

th
e

reference curve is sampled similarly to th
e

attainment curve.

Bias and uncertainty

a
re driven in CFD curves b
y sample densities in time and space.

Therefore, w
e

advise that similar sample densities

a
re used in th
e

derivation o
f

attainment

and reference curves. A
s

this is not always feasible, analytical methods are needed in the

future to equally weight sampling densities between attainment and reference curves.

4.2. CBP Default Reference Curve

In some cases,

th
e

development o
f

biologically- based reference curve is not possible due

to lack o
f

data describing

th
e

health o
f

th
e

relevant species. In such cases, a more

arbitrary approach is required since better information is not available. EPA recommends

th
e

u
s
e

o
f

a default curve in cases where a biologically- based one is not available. That

default curve is defined b
y

these properties:

1
.

symmetric about

th
e

1
:

1 line,

2
.

hyperbolic,

3
.

total area = 0.1, and

4
.

pass through (1,0) and (0,1)

3
5



(

s
e

e EPA, 2003; page 174). The equation that describes this figure is defined b
y

th
e

equation:

( x
+ b)*( y
+

b
)

= a

Where: b = 0.0429945

a = b
2 + b

This reference curve is illustrated in Figure

4
.1

b
y the blue curve.

A
n

alternative default reference curve might b
e formulated b
y

extending

th
e

arbitrary

allowance o
f 10% exceedance into

th
e two dimensional framework o
f

th
e CFD.

The criterion threshold is a value that should b
e rarely exceeded b
y a population a
t

healthy levels. When the population is unidimensional, say concentration in a point

source effluent, then one can obtain this upper threshold based o
n

th
e

simple distribution

o
f

values in a healthy population (Figure 4.2). The ninetieth percentile o
f

this distribution

might b
e chosen a
s

th
e

criterion threshold. Thus in this example, 10% noncompliance is

allowed because this level o
f

noncompliance is expected in a healthy population. A
standard technique

fo
r

estimating distribution percentiles is to assume a mathematical

form

f
o
r

th
e

distribution, e
.

g
.
,

th
e

normal distribution, and to estimate

th
e

percentile a
s

some number o
f

standard deviations above

th
e

mean. The 90th percentile o
f

th
e

normal

distribution is 1.2815 standard deviations above

th
e

mean.
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Figure 4.2. Hypothetical lognormal distribution that might b
e

typical o
f

Chlorophyll. The figure

illustrates the relation o
f

the geometric mean and the criterion threshold

s
e
t

a
t

the 90th percentile.

When regulating populations that are distributed in both space and time, this simple

concept

f
o
r

regulating noncompliance must b
e extended to account

f
o
r

th
e

variability in

each dimension. While there is some added complexity in th
e

mathematics,

th
e

fundamental concept remains

th
e

same: That

is
,

to s
e
t

th
e

criterion threshold a
t

a certain

distance above

th
e mean s
o

that exceedance o
f

that threshold will b
e rare in a healthy

population. In this case,

th
e

distance b
y which

th
e

threshold must exceed

th
e mean is a

function o
f

both

th
e

spatial and temporal variance components a
s

described below.

T
o

establish these criteria thresholds

f
o
r

populations with two components o
f

variance,

assume

th
e

simple model:

Y
i(

s
j) = : + "

i + $ i( s
j)

where:

: is th
e

desired mean level o
f

chlorophyll ( in log space)

"
i is a random term

f
o
r

variation over time with variance F
2
"

,

$ i( s
j)

is a random term

f
o
r

variation over space with variance

F
2
$

Y
i(

s
j)

is a water quality constituent measured a
t

time i and location

s
j.
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The variance o
f

x
ij

is F
2

"

+

F
2

$

= F
2

. The standard dev o
f

x
is

is sqrt(

F
2

)

= F
.

It is

common to allow a
n overall 10% exceedance rate without declaring a
n assessment unit

o
u
t

o
f

compliance. We would expect 10% o
f

th
e

x
is

to fall above u + 1.2815* F where

1.2815 is the 90th percentile o
f

th
e

standard normal distribution. Thus (assuming

normality) a population with spatial and temporal variance characterized b
y

F
2
"

and F
2

$

that has a mean that is 1.2815* F below

th
e

threshold criterion should have a
n exceedance

rate o
f

10% over space and time. Note that

th
e

reference curve is determined b
y

th
e

ratio

F
2

"

/ F
2

$

and

th
e

distance in standard deviations o
f

th
e mean from

th
e

threshold. The

actual values o
f

th
e

variance components, th
e

mean, and th
e

threshold, a
re

n
o
t

important

a
s

long a
s

th
e

relationships hold. Thus a
s

long a
s

th
e

variance ratio is consistent, and

mean to threshold distance is a fixed number o
f

standard deviations,

th
e

same reference

curve will serve

f
o

r

a
ll seasons and regions.

Letting chlorophyll observed in th
e

decade o
f

th
e

1960's serve a
s

a reference population,

th
e

parameters in Table

4
.1 can b
e used to construct this reference curve based o
n

th
e

variance ratio and the mean to threshold distance given in the table. The ratio F
2
"

/ F
2
$

is

computed a
s

the ratio o
f

the temporal variance term and the spatial variance term. The

mean to threshold distance is computed to b
e 1.2815F

f
o
r

a
ll regions and seasons. Based

o
n there parameters, a reference curve

f
o
r

chlorophyll can b
e derived (green curve, figure

4.1). For comparison a reference curve based o
n

a variance ratio o
f

1.0 (red curve, Figure

4.1) and

th
e

standard CBP reference curve (blue curve, Figure 4.1)

a
re also shown.

Table 4.1. Chlorophyll criteria derived b
y computing and upper threshold based o
n

predicted means

f
o
r

mid-flow1960' s chlorphyll data.

Season Salinity

Zone

Mean

Log(chl)

GMmean

(chl)

Temporal

Variance

Spatial

Variance

S
td

Dev

log(chl)

Threshold

Criterion

log(chl)

Threshold

Criterion

(chl)

Spring OH 0.7684 5.87 0.0233 0.0658 0.2985 1.2594 18.17

Summer OH 1.1693 14.77 0.0233 0.0658 0.2985 1.6603 45.74

Spring MH 0.4137 2.59 0.0233 0.0658 0.2985 0.9047 8.03

Summer MH 0.8626 7.29 0.0233 0.0658 0.2985 1.3536 22.58

Spring PH 0.1386 1.38 0.0233 0.0658 0.2985 0.6296 4.26

Summer PH 0.218 1.65 0.0233 0.0658 0.2985 0.709 5.12
3
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Figure 4.1. Illustrations o
f

three reference curves: 1
)

th
e standard CBP reference curve derived to

cover 10% o
f

th
e

percent space b
y

percent time plane (blue); 2
)

a reference curve based o
n 10%

exceedance frequency and a temporal- spatial variance ratio o
f

1.0(red); and 3
)

a reference curve

based o
n 10% exceedance frequency and a temporal- spatial variance derived from chlorophyll

data( green).

Relative to th
e standard reference curves,

th
e curve based o
n

th
e observed variance ratio

fo
r

chlorophyll is more restrictive o
f

events where large portions o
f

the population are out

o
f

compliance. For example, th
e

CBP standard reference (blue) would allow 40% o
f

area

to exceed

th
e

criterion threshold u
p

to about 6% o
f

th
e

time. The proposed chlorophyll

reference curve (green) would restrict occurrences o
f

40% o
f

area

o
u
t

o
f

compliance to

about 2% o
f

th
e

time. Conversely, th
e

proposed curve (green) allows a higher frequency

o
f

events where a small percentage o
f

space in out o
f

compliance. For example, 10% o
f

space is allowed

o
u
t

o
f

compliance 36% o
f

th
e

time under

th
e

proposed curve and 27% o
f

th
e

time under

th
e

standard curve.

While there is mathematical and statistical logic underpinning this proposed chlorophyll

reference curve, it is important to remember that it is based o
n

parametric models and

simplifying assumptions. I
t
is recommended that validation exercises b
e performed to

insure that

th
e general shape o
f CFD curves generated from data collected in near

reference conditions is approximated b
y

th
e

proposed curve.

3
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4.3 Accommodating Seasonality in Reference Curves

The degree o
f

acceptable exceedance can vary with season. For example, benthos

a
re

less tolerant o
f

hypoxia in warmer water temperatures. In addition, the threshold

criterion may never b
e exceeded in some seasons and frequently b
e exceeded in others.

B
y

combining seasons,

th
e

acuteness o
f

a specific seasonal exceedence is diluted b
y

data

from

th
e

acceptable season(

s
)
.

T
o some extent, seasonal differences can b
e

accommodated b
y

changing

th
e

threshold criterion among seasons. However, there may

still b
e a need to develop separate reference curves b
y season.

4
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5.0 Review CFD Statistical Properties Including Bias, Precision, and

Inference.

The CFD a
s

a
n assessment tool is a relatively new and unstudied concept.

I
t
s close

relationship to the empirical distribution function does give some insight o
n

the

mathematical behavior o
f

th
e CFD. In this section w
e

review some o
f

th
e

properties o
f

th
e CFD and discuss

th
e

complications that arise from these properties when

th
e CFD is

used a
s

a
n assessment tool. After defining

th
e

population which determines

th
e CFD, w
e

g
o

o
n

to discuss the currently proposed sampling and estimation scheme, sources o
f

error

in th
e

estimation scheme, and problems that result from these. The goal is to succinctly

define these problems and elucidate possible solutions. This section will cover:

th
e

behavior o
f

th
e CFD a
s

a function o
f

temporal and spatial variance, methods

f
o

r

construction CFD reference curves,
th

e
influence o

f

sampling and estimation variance o
n

th
e CFD shape, and feasible methods

fo
r

developing statistical inference tools.

5
.1 Review o
f CFD Properties

With any statistical application, it is important to distinguish between

th
e

true descriptive

model underlying

th
e

population being sampled and

th
e

estimate o
f

this model derived

from the data collected in a sample. A
s

described above, the CFD has a data driven

definition where

th
e CFD is constructed based o
n a sample from a population

f
o
r

some

water quality parameter. This population is a continuous random process over space and

time.

In order to quantify

th
e

statistical properties o
f

th
e CFD,

th
e CFD is defined in terms o
f

a

population o
f

experimental units. This approach is a discrete approximation o
f

th
e

continuous random process in both time and space. However,

th
e

estimation scheme

involves interpolation to discrete units in a spatial dimension and discrete days in th
e

temporal dimension. T
o

facilitate a
n understanding o
f

th
e

relation o
f

th
e

estimator to th
e

true population, it seems reasonable to use a discrete approximation a
s

the model fo
r

the

true population.

5
.2 Defining the CFD Ideal

The population will b
e defined a
s

having different sizes o
f

experimental units in much

th
e

way w
e think o
f

a population that gives rise to a nested design o
r

repeated measures

design. The Chesapeake Bay will b
e

partitioned into segments. Assessment will b
e done

f
o
r

each segment based o
n a three year record o
f

th
e

segment. Thus a three year period

f
o
r

th
e

segment defines

th
e

entire population that will b
e

partitioned into experimental

units. The continuous time dimension is partitioned into days to form

th
e

primary units

which

a
re

th
e

state o
f

a segment

f
o
r

a day. Call this a Segment- Day. Let there b
e M

segment-days in th
e

assessment period (typically 3 x 365). The continuous spatial

dimension is partitioned into N 3
-

dimensional cells (may range from hundreds to

4
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thousands). The state o
f

each cell

f
o

r

a day will b
e a unit nested within

th
e segment-day.

The attribute o
f

interest will b
e a measure o
f

water quality

f
o

r

each cell

f
o

r

a day.

Examples might b
e

th
e mean level o
f

Chlorophyll- a in the cell

fo
r

one day o
r

the

minimum o
f

dissolved oxygen in th
e

cell during

th
e

day. Let Y b
e a random variable

f
o

r

th
e

attribute o
f

interest and consider

th
e

following model

Y
i(

s
j) = : + "

i + $ i( s
j) Eqn 5.1.1.1

the vector " will b
e assumed to have expectation 0 and variance _
"

and

each vector $
i
will b

e assumed to have expectation 0 and variance _
$

i.

i is th
e

ordinal index

f
o

r

days and

s is a vector valued ordinal

f
o

r

spatial location.

Under this model, _
"

defines

th
e

correlation over time a
t

th
e

segment-day level and _
$

i

defines correlation over space that occurs cell to cell within a day.

L
e
t

C i( s
j)

b
e a collection o
f

threshold limits that define

th
e

acceptable criterion

f
o
r

th
e

measured attribute. If Y i( s
j) exceeds C i( s
j)

in a cell, that cell is called degraded. The

criterion is allowed to vary in both time and space s
o that in theory each Y i( s
j) might b
e

compared to a unique C i( s
j)
..

I
t may vary over time because different levels o
f Y may

b
e acceptable in different seasons. It may vary over space because different levels o
f

Y
may b

e acceptable in different salinity regimes s
o

that even within a segment, C may b
e

a

function o
f

salinity. A
s

a rule, it is anticipated that C i( s
j) will b
e constant

f
o
r

regions o
f

space and time such a
s

salinity zones and seasons.

Now convert

th
e measured attribute Y i( s
j)

to a Boolean response a
s follows

TY i( s
j) = I
( Y i( s
j) > C i( s
j)
)

= 1 if Y i( s
j) > C i( s
j) Eqn 5.1.1.2

= 0 otherwise

Thus TY takes the value 1 when Y exceeds th
e

threshold defined b
y

C
.

Using TY, w
e

summarize

th
e

state o
f

a segment o
n one day a
s

th
e

fraction o
f

that segment that is out o
f

compliance

_== N1jjii)(sTY)( 1
/NP Eqn 5.1.1.3

The CFD that w
e wish to estimate is one minus

th
e

cumulative distribution function o
f

th
e

Pi's. I
f

P
(

i) represents

th
e

ordered values o
f

th
e

Pi's

f
o
r

any assessment period, then

le
t

Eqn 5.1.1.4_=_= M1i( i) p
)

I(P(1
/

M
)

G
(

p
)

G defines

th
e CFD that if it were known would b
e used

f
o
r

a
n exact assessment. The

cumulative distribution function is determined b
y

th
e mean and variance o
f

the ideal

population. This population is defined with a spatial variance component and a temporal

4
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variance component. The final CFD shows

th
e cumulative percent o
f

time that a certain

percent o
f

space is below

th
e

criterion threshold. I
f

th
e CFD shows that water quality in a

segment is beyond the threshold

fo
r

too much space and too much time, then

th
e segment

is classified a
s

impaired.

For one assessment period, G can b
e considered exact a
s

defined above, but recognize

that even this is only one observation o
f

th
e many possible observations o
f G that could

result from sampling different assessment periods.

Assume

f
o

r

simplicity that Y is normal. If _
"

were 0 s
o

that Y had constant expectation

over time and if _
$ were o
f

th
e

form _
2
I

then each cell o
n

each day would have constant

probability o
f

exceeding a constant value o
f

C given b
y 1 - _
(

C
)

where _ is th
e

normal

cumulative density function. In this greatly simplified scenario, P
i

would b
e

th
e

outcome

o
f N independent Bernoulli trials. The ideal CFD would b
e

the cumulative distribution

function o
f M outcomes o
f

a binomial random variable with N trials. If w
e

allow _
$

to

have positive o
f
f

diagonal elements, then th
e

Bernoulli trials become dependent ( i. e
.

adjacent cells

a
re more likely to either both exceed o
r

both meet

th
e

standard than distant

cells). This should make the distribution o
f

th
e

P
i

more variable than under

th
e

independent binomial model, but

th
e

expectation o
f

P
i

would b
e constant over time. I
f

w
e

relax

th
e

assumption that _
"

is 0
,

then

th
e

expectation o
f

th
e

P
i

would vary over time

which would increase

th
e

variability o
f

th
e

P
i

even more.

Under

th
e

simplifying assumptions o
f

independence, constant mean, and constant

variance, it is possible to obtain a
n

analytical formulation

f
o
r

th
e CFD based o
n

th
e

parameters o
f

Eqn 5.1.1.1. However, when

th
e

more realistic time dependent, space

dependent model with seasonal nonstationarity is considered, a
n

analytical formulation is

not tractable. The lack o
f

a
n

analytical formulation fo
r

this estimator under realistic

dependence assumptions, e
.

g
.

non- trivial _
"

and

_
$
,

points toward computer intensive

simulation techniques to develop statistical inference procedures

f
o
r

this problem. None-

the- less, it is interesting to consider the behavior o
f

th
e CFD under the simplified model.

5
.3 CFD Behavior under a Simplified Model

In what follows, th
e

behavior o
f

th
e

CFD under various parameter formulations f
o
r

Equation 5.1.1.1

a
re presented in graphical form. There

a
re four parameters involved:

_ the population mean, _
t

the temporal variance, _
s the spatial variance, and C the

criterion threshold. In th
e

examples that follow, three o
f

these parameters

a
re held

constant and the fourth is varied to illustrate

th
e

effect o
f

the varied parameter.

In this exercise,

th
e

parameters o
f

Equation 5.1.1.1

a
re simplified a
s

follows:

_
"

= _
t

I and _
$ = _
s

I, where I is th
e

identity matrix. Thus in both

th
e

temporal

and spatial dimensions, independence and constant variance is assumed.
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Example 1
.

Example 1 considers

th
e

effect o
f

changing

th
e population mean o
n

th
e

shape o
f

th
e CFD.

Table 5.1. Parameter values and color key for the family o
f

curves shown in Figure

5.1.

_ _
t

_
s

c color

curve

number

5 1 1 5 Red 1

4 1 1 5 Orange 2

3 1 1 5 Brown 3

2 1 1 5 Green 4

1 1 1 5 Blue 5

igure 5.1. A family o
f

curves illustrating the behavior o
f

the CFD a
s

the

alues

f
o
r

o
te that when

th
e

population mean is equal to th
e

criterion threshold,

th
e CFD is a

c
t

o
f

old, w
e

noncompliance 50% o
f

th
e

time.

F

population mean decreases from

th
e

criterion threshold. The parameterveachcurve and the corresponding color are given in the following Table

5
.1

N
diagonal line from upper left to lower right ( Figure 5.1, red). This is largely a

nartifausingsymmetric distributions, th
e

normal, f
o
r

both th
e

time and space variance

components. That

is
,

when

th
e

population median is equal to th
e

criterionthreshexpect

a
n average o
f

50% noncompliance over time and w
e

expect

th
e

exceed 50%

4
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A
s

th
e

overall population mean decreases from

th
e

criterion threshold,

th
e

family o
f

urves tends to move from the diagonal line toward the lower left corner. Thus a

n

tance

line.

c

reference population, which should have a small probability o
f

exceeding

th
ecriteriothresholdmight have a shape similar to th

e

green curve. This illustrates

th
eimporof

th
e

shape o
f

th
e CFD in measuring compliance. A CFD from a highly compliant

population will tend to hug to lower left corner similar to th
e

blue and green curves. A
s

th
e

population mean approaches

th
e

criterion threshold,

th
e CFD approaches the red

I
f

th
e

population mean were to exceed th
e

criterion threshold, th
e

CFD would tend

toward

th
e

upper right corner.
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Example 2
.

Example 2 considers

th
e

effect o
f

changing

th
e temporal variance o
n

th
e

shape o
f

th
e CFD. Note that

th
e

population mean is held constant a
t

3 which

corresponds to the yellow curve o
f

the preceding example.

Table 5.2. Parameter values and color key for

th
e

family o
f

curves shown in Figure

5.2.

_ _
t

_
s

c color

curve

number

3 1 1 5 Red 1

3 2 1 5 Orange 2

3 3 1 5 Brown 3

3 4 1 5 Green 4

3 5 1 5 Blue 5

Figure 5.2. A family o
f

curves illustrating

th
e

behavior o
f

the CFD a
s

the temporal

population variance increases. The parameter values

f
o
r

each curve and the

corresponding color are given in Table 5.2. Note that the red curve here has the

same parameters a
s

the yellow curve o
f

Figure 5.2.

A
s

temporal variance increases, th
e

frequency o
f

large proportions o
f

space going out o
f

compliance increases (Figure 5.2, lower right). Conversely,

th
e

frequency o
f

small

proportions o
f

space

o
u
t

o
f

compliance ( i. e
.

large proportions o
f

space being in

4
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compliance) decreases (Figure 5.2., upper left). That

is
,

shifting

th
e daily mean either

down o
r

u
p tends to shift

th
e

entire segment toward o
r

away from compliance.
In preparing water clarity CFDs

f
o

r

reference areas defined b
y

having successful SAV
beds, it is n

o
t

unusual to find a curve shape similar to Figure

5
.2 orange o
r

yellow

curves. This pattern suggests that SAV is tolerant o
f

ephemeral events o
f

spatially broad

degraded water clarity. If water clarity is persistently degraded over portions o
f

th
e

area,

SAV may b
e impaired.
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Example 3
.

Example 3 considers

th
e

effect o
f

changing

th
e

spatial variance o
n

th
e shape

o
f

th
e CFD. Again

th
e

population mean is held constant a
t

3 which corresponds to th
e

yellow curve o
f

the first example.

Table 5.3. Parameter values and color key for

th
e

family o
f

curves shown in Figure

5.3.

_ _
t

_
s

c color

curve

number

3 1 1 5 Red 1

3 1 2 5 Orange 2

3 1 3 5 Brown 3

3 1 4 5 Green 4

3 1 5 5 Blue 5

Figure 5.3. A family o
f

curves illustrating

th
e

behavior o
f

the CFD a
s

the spatial

population variance increases. The parameter values

f
o
r

each curve and the

corresponding color are given in Table 5.3.

Increasing

th
e

spatial variance results in a family o
f

curves that is complementary to

those that follow a
n

increase in temporal variance. Increasing spatial variance results in a

higher frequency o
f

small proportions being

o
u
t

o
f

compliance. It is n
o
t

s
o much a
n

a
ll
-

o
r
-

nothing phenomenon.
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Example 4
.

Example 4 considers

th
e

effect o
f

changing both temporal and spatial

variance o
n

th
e

shape o
f

th
e CFD.

Table 5.4. Parameter values and color key for

th
e

family o
f

curves shown in Figure

5.4.

_ _
t

_
s

c color

curve

number

3 1 1 5 Red 1

3 2 2 5 Orange 2

3 3 3 5 Brown 3

3 4 4 5 Green 4

3 5 5 5 Blue 5

Figure 5.4. A family o
f

curves illustrating

th
e

behavior o
f

the CFD a
s both temporal

and spatial variance increases. The parameter values

f
o
r

each curve and the

corresponding color are given in Table 5.4.

Increasing

th
e

spatial and temporal variance together has

th
e

opposite effect o
f

decreasing

th
e

population mean. The CFD tends to move in a direction o
f

noncompliance. Thus

compliance a
s measured b
y

th
e CFD depends o
n

th
e

relative values o
f

th
e

population

mean,

th
e

temporal and spatial variance, and

th
e

criterion threshold. Increasing

th
e

population mean has the same effect a
s

decreasing the criterion threshold. Increasing

4
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population variance has

th
e same effect a
s increasing

th
e mean o
r

decreasing

th
e

criterion

threshold. In a sense,

th
e CFD is measuring

th
e

distance between

th
e

population mean

and the criterion threshold in units o
f

variance analogous to a simple t- test. A nuance

introduced here that has n
o analogy in th
e

t- test is that

th
e

ratio o
f

spatial to temporal

variance controls

th
e

symmetry o
f

th
e

curve.

5
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5
.4 Uncertainty and Bias

In Section 5.1., it was shown that

th
e

shape o
f

th
e CFD is a critical element to

determining compliance. Thus it is important that this shape b
e primarilydetermined b
y

th
e

state o
f

compliance o
f

a segment and

n
o
t

b
e influenced b
y

factors

n
o
t

relating to th
e

status o
f

compliance. Because

th
e CFD is constructed based o
n data that

a
re a sample

from

th
e

whole, it is clear that some uncertainty in the CFD will result. In addition,

th
e

CFD is a function o
f

th
e

empirical distribution function (EDF) o
f

fraction o
f

space in

compliance. The shape o
f

this EDF is determined b
y

th
e mean and variance o
f

th
e

sample. Thus any factor, such a
s sample size, that affects

th
e

precision o
f

th
e

fraction o
f

space estimate, will affect

th
e

shape o
f

th
e CFD. In this section w
e

review

th
e

effect o
f

noncompliance factors o
n

the shape o
f

the CFD.

Sample Size and Shape

A
s

noted, because

th
e CFD is a function o
f

th
e EDF o
f

estimates o
f

" fraction o
f

space",

any factor affecting

th
e

precision o
f

th
e

estimate o
f

fraction o
f

space in exceedance will

affect

th
e

shape o
f

th
e CFD. In particular,

th
e

number o
f

samples used

f
o
r

each p
-

h
a
t

(%

exceedence) will affect precision. For a given segment, this fraction will b
e estimated

more accurately if twelve samples

a
re used to form

th
e

interpolated surface rather than

six. Because o
f

unknown spatial dependence in th
e

data, it is difficult to analytically

quantify the magnitude o
f

this sample size effect. Therefore simulation analysis was

employed to address this issue.

Numerous simulation tests were performed. These begin with a simulation o
f

structurally

simple data that have n
o temporal o
r

seasonal trend and progress to simulated data that

mimic

th
e

temporal and spatial structure o
f

observed data. Because the results from this

latter simulation

a
re most relevant, these

a
re

th
e

results that

a
re presented and discussed.

Simulation Experiment

Simulated data were created to mimic

th
e

properties o
f

surface chlorophyll in th
e

Patuxent estuary. Data were created to f
il
l

a 5 b
y

6
0

cell grid which approximates th
e

long and thin nature o
f

a
n

estuary. These data have mean zero and a spatial variance-

covariance structure chosen to approximate

th
e

spatial variance- covariance structure o
f

cruise- track chlorophyll observed in th
e

Patuxent estuary. Thirty

s
ix grids o
f

data were

simulated to represent 3
6 months in a three year assessment period. The temporal and

spatial trends were added to th
e

simulated data b
y

adding in means computed

f
o
r

each

month and river kilometer during th
e

period Jan 1
,

1991to Dec 3
1
,

1993. Simulated data

were created using

th
e

"grf" function o
f

th
e

Geostatistical Package " geoR" o
f

th
e

R
-

package.

After

th
e

full population o
f

data was simulated

f
o
r

3 year assessment period, a sampling

experiment was conducted to assess

th
e

effect o
f

sample size o
n

th
e shape o
f

th
e CFD.

5
1



First, a
s a benchmark, a CFD was computed using

a
ll

o
f

th
e simulated data. T
o simulate

th
e

effect o
f

sampling, a sample o
f

fixed size was randomly selected from each

th
e

3
6

5x60 grids o
f

data. Using these samples, kriging (krige. conv function o
f

geoR) was used

to populate each monthly grid with estimates. These estimated chlorophyll surfaces were

used to compute a
n estimate o
f

th
e CFD which was graphically compared to th
e

benchmark (Figure 5.5). For a fixed sample size,

th
e

process was repeated until it was

clear whether
th

e
differences between

th
e

benchmark CFD and

th
e

estimated CFDs were

due to variance o
r

bias. T
o assess the effect o
f

sample size,

th
e

process was repeated

fo
r

several sample sizes.
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Figure

5
.5 Illustration o
f

th
e

effect o
f

sample size ( n
)

o
n

th
e

shape o
f

the CFD

f
o
r

sample sizes

1
0
,

2
0
,

4
0
,

and

8
0
.

The effect o
f

sample size o
n

th
e

shape o
f

th
e CFD is consistent with expectations based

o
n

th
e

relation o
f

th
e CFD to th
e

empirical distribution function (Figure 5.5). A
s

sample

size decreases,

th
e

variance o
f

th
e

estimated values o
f

fraction o
f

space increases. This

increase in variance results in th
e

estimated CFD being to th
e

left o
f

th
e

true curve

f
o
r
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low values o
f

fraction o
f

space and to th
e

right o
f

th
e true curve

f
o

r

high values o
f

fraction o
f

space. This assessment has been repeated many times, varying

th
e

threshold

criterion, systematic

v
s
.

random sampling,

th
e

level o
f

variability in the simulated data,

and s
o

o
n
.

This sample size effect persists

f
o

r

every case where realistic estimation is

employed.

Sampling Scale and Shape

A
s

shown above (Figures 5.2-5.4) th
e

shape o
f

th
e

CFD is a function o
f

th
e

ratio o
f

temporal and spatial variance. T
o

th
e

extent that

th
e

ratio o
f

these variance components

in th
e

data represent

th
e

true state o
f

nature, this is acceptable. However, under a model

with strong spatial and temporal dependence, th
e

ratio o
f

these variance components

might b
e influenced b
y the scale o
f

sampling in the spatial and temporal dimensions. For

example, samples collected

f
a

r

apart in time might reflect higher variance than samples

collected close in time. If th
e

ratio o
f

temporal and spatial variance is influenced b
y

th
e

density o
f

sampling in each dimension, then experimental design will have a
n

effect o
n

th
e

asymmetry o
f

th
e CFD estimate.
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5
.5 Confidence Bounds and Statistical Inference

A
n

investigation into

th
e

use o
f

conditional simulation to obtain confidence bounds

f
o

r

the CFD showed that not only is this a promising technique fo
r

statistical inference, but

also has potential in correcting bias associated with sample size effects that has been

identified a
s

a central problem in implementing

th
e CFD approach. Correcting

th
e

bias

o
f

th
e CFD due to th
e

sample size effect is important in obtaining confidence bounds o
n

th
e CFD that cover

th
e

true CFD

f
o

r

a segment. Because bias correction is a
n important

first step, this aspect o
f

th
e

conditional simulation experiments will b
e discussed first.

Conditional simulation will then b
e evaluated in it
s efficacy in obtaining confidence

intervals.

This section first outlines

th
e

basic concept o
f

conditional simulation and provides a
n

algorithm that employs conditional simulation to estimate confidence bounds fo
r

th
e

CFD. The results o
f

this experiment support

th
e

potential o
f

conditional simulation

f
o

r

correcting

th
e

sample size bias. A heuristic discussion o
f

th
e

mechanism underlying this

adjustment

f
o
r

sample size effect is presented with

th
e hope o
f

motivating additional

analytical investigation o
f

this effect.

Conditional simulation (Journel, 1974; Gotway, 1994) is a geostastical term

f
o
r

simulating a population conditional o
n information observed in a sample. In th
e

case o
f

kriging, a sample from a spatial population is used to estimate

th
e

variogram and mean

f
o
r

th
e

population. The conditional simulation procedure generates a field o
f

simulated

values conditioned o
n the estimated mean and variogram from the sample. T
o the extent

that

th
e

estimated mean and variogram approximate

th
e

true mean and variogram and

th
e

assumed distribution is a reasonable model

f
o
r

th
e

true distribution, repeated simulations

o
f

this virtual population will represent

th
e

variability typical o
f

th
e

true population. It

follows that statistics computed from

th
e

conditionally simulated fields will represent

th
e

expected variability o
f

statistics from

th
e

true distribution. The CFD is a graphical

representation o
f

ordered statistics o
f

percent compliance over time and it is a reasonable

to assume that repeated conditional simulations will lead to effective confidence bounds

f
o
r

th
e CFD.

Conditional Simulation Methods

In th
e

computation o
f

th
e CFD, conditional simulation is implemented a
t

th
e

interpolation

step

f
o
r

each month. Interpolation produces a
n estimate o
f

th
e

spatial surface o
f

th
e

target parameter. From that estimate o
f

th
e

surface is obtained a
n estimate o
f

th
e

percent

o
f

noncompliance. Using conditional simulation,

th
e

surface can b
e reconstructed 1000

times. From

th
e

1000 simulated surfaces

a
re computed 1000 estimates o
f

th
e

proportion

o
f

noncompliance. When this is repeated f
o
r

each month f
o
r

say 3
6

months, th
e

result is

a
n array o
f

1000 sets o
f

3
6 values o
f

th
e

proportion o
f

noncompliance. Each o
f

th
e

1000

sets o
f

3
6 can then b
e ranked from largest to smallest to compute a CFD in th
e

usual way

which results in 1000 CFD estimates. The variability among these 1000 CFDs can b
e

used to estimate confidence intervals.
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T
o evaluate this concept,

th
e following simulation experiment was conducted

1
)

The first step is to simulate a population that will b
e considered the " true" population

f
o

r

this exercise. A grid o
f

dimensions 5x60 is populated using a
n exponential spatial

variance model with variogram parameters

s
e

t

to (0.00625026, 2.67393446). These

variogram parameters were estimated from Patuxent cruise track chlorophyll data. This

grid is populated 3
6 times to represent 3
6 months. The mean and variogram

a
re held

constant

fo
r

th
e

3
6 simulations to create a simplistic case with n
o seasonal o
r

spatial

trend. Using this s
e

t

o
f

data, th
e

CFD is computed in th
e

usual way and this is considered

th
e

" true" CFD.

2
)

A sample o
f

size 4
0

is selected from each o
f

th
e

3
6

simulations a
t

random locations o
n

the grid. Ordinary kriging is used to estimate the spatial surface

fo
r

each simulation and

from these 3
6 estimates o
f

th
e

monthly spatial surfaces, a CFD is computed. This is

called

th
e

' estimated' CFD.

3
)

For each o
f

th
e

kriged monthly surfaces, 1000 conditional surfaces

a
re simulated

based upon the mean and variogram estimated from

th
e

sample data. The Cholesky

decomposition is used to reconstruct

th
e

covariance structure indicated b
y

th
e

estimated

variogram. The conditionally simulated surfaces were processed to yield 1000 estimates

o
f

th
e

proportion o
f

noncompliance. The 1000x36 noncompliance values

a
re used to

compute 1000 CFDs, which

a
re called

th
e

population o
f

" conditionally simulated" CFDs.

4
)

Each " rank position" o
f

th
e

monthly ordered proportions o
f

noncompliance has 1000

values in this simulated population. T
o assess variability in th
e

simulated population,

graphs o
f

th
e

miniumum,

th
e

2.5th percentile,

th
e

50th percentile,
th

e
97.5th percentile,

and

th
e maximum a
t

each rank position

a
re plotted to illustrate a 95% confidence envelop

f
o
r

th
e CFD (Figure 5.6).

T
o

test this procedure under various conditions, this basic simulation exercise was

repeated varying

th
e

sample size and adding temporal and spatial trend to th
e

simulation

o
f

the " true" population to reflect conditions more similar to real populations.

Conditional Simulation Results

The results o
f

this simulation exercise are presented graphically. In Figure

5
.. 1 the black

line represents

th
e CFD computed

f
o
r

th
e

true population computed from

th
e

original

data. The

re
d

line is th
e

estimated CFD computed fromkriging estimates based o
n

samples from

th
e

true population. The brown lines represent

th
e min and max o
f

th
e

1000 conditionally simulated CFDs. The green lines represent

th
e

2
.5 and 97.5

percentiles o
f

the 1000 conditionally simulated CFDs, which is the proposed 9
5

percent

confidence interval. The blue curve is th
e

median o
f

th
e

1000 CFD curves.
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Bias Assessment

The results in Figure 5.6

a
re unusual in several respects. First note that the red curve

shows
th

e

typical sample size bias

f
o

r

th
e CFD a
s

described above ( n
= 40). Relative to

th
e

true CFD (black)

th
e

estimated CFD is below

th
e

black line

f
o

r

half

th
e

curve and

above

th
e

black line

f
o

r

th
e

remainder. The first unusual feature is that

th
e

distribution o
f

th
e

conditionally simulated CFD curves is n
o
t

centered o
n estimated CFD. In fact

th
e

estimated CFD is not completely within

th
e

bounds (min, max) o
f

th
e

conditionally

simulated population. A surprising feature is that th
e

median o
f

th
e

simulated population

tracks fairly well with
th

e
true CFD (black). It is clear that

th
e

simulated CFD population

is estimating something other than what is estimated b
y

th
e

estimated CFD (red). A
t

th
e

same time, it appears that th
e

median o
f

th
e

simulated population is a good estimator o
f

the true CFD and the proposed confidence bands (green) is reasonable confidence

envelop about

th
e

true CFD.

What follows is a heuristic explanation
f
o
r

why CFD computed from conditional

simulations might b
e a better estimator o
f

th
e

true CFD than a CFD computed from

th
e

kriging estimator. Additional analyses test whether this property might hold in general o
r

is a
n

artifact o
f

th
e

simple conditions ( n
o

spatial o
r

temporal trend) under which this

experiment was performed.
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Figure 5.6. Confidence bounds computed based o
n

quantiles o
f

fraction o
f

space computed o
n

conditionally simulated surface estimates using variogram estimates from data. The base simulation

has spatial correlation and n
o spatial o
r

temporal trend. Sample size is 4
0
.
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In prior discussions w
e have noted that

th
e CFD is th
e inverse o
f

th
e CDF o
f

th
e

population o
f

p
's where p is fraction o
f

space out o
f

compliance with

th
e

criterion

threshold. It is the variance o
f

the

p
's that determines the steepness o
f

the CFD:

th
e

smaller

th
e

variance,

th
e

steeper

th
e CFD. In real applications, estimates o
f

th
e

p
's have

two important variance components. One variance component comes from true variance

over time in th
e

parameter being assessed. Another variance component comes from

imperfect estimates due to sampling variability. In th
e

base simulation with n
o

spatial o
r

temporal trend in th
e

data, it is this second source o
f

variance that controls

th
e

shape o
f

th
e

CFD.

Because

th
e

variance o
f

th
e

p
's

is critical to th
e

shape o
f

th
e CFD, consider

th
e

variance

o
f

p
's computed from three sources in th
e

experiment outlined above: 1
)

th
e

true data, 2
)

a krig estimate based o
n a sample from

th
e

true data, and 3
)

conditionally simulated data

based o
n a krig estimate o
f

2
)
.

T
o enhance

o
u
r

understanding o
f

this comparison,

th
e

variance o
f

th
e

p
's

a
re discussed

f
o

r

two cases

f
o

r

each source. The first case assumes

complete independence in th
e

base simulation and does not use interpolation to estimate

proportion o
f

area

o
u
t

o
f

compliance. This simplification allows u
s

to easily infer

th
e

behavior o
f

the CFD using analytical methods. The second case introduces a
n unknown

spatial dependence in th
e

base simulation and uses interpolated data to estimate

th
e

proportion o
f

area

o
u
t

o
f

compliance. These additional complexities make it difficult to

implement analytical inference

b
u
t

conclusions may still b
e inferred b
y

analogy to th
e

simple independent case.

Consider

th
e

sequence o
f

sources where

th
e

base simulations
a
re generated under

th
e

simple constraints o
f

constant mean, constant variance and

th
e

errors

f
o
r

each cell o
f

th
e

grid that

a
re independent. For this case

th
e

exceedance probability
is

:

)/)((x-1ps__C___=

where : C is th
e

criterion threshold,

is th
e

data a
t

location s
,

s
x

_ is th
e mean used in th
e simulation,

_ is th
e

variance used in th
e

simulation, and

is th
e

standard normal Cumulative Distribution Function._

The distribution o
f

th
e

true

p
's computed from

a
ll 300 cells o
f

th
e

5x60 simulation grid

would behave like that o
f

a independent binomial with N
= 300 with a variance o
f

( p
(

1
-

p
)/ 300). From these independent data draw a sample o
f

size 40. Using only th
e

proportion o
f

th
e

sample that is out o
f

compliance to estimate

th
e

p's,

th
e

distribution o
f

th
e

p
's would b
e

that o
f

a independent binomial with N = 4
0 and variance ( p
(

1
-

p
)
/

40).

Clearly

th
e

p
's estimated from

th
e

sample o
f

4
0 have much larger variance than

p
's from

the base simulation with 300 cells. Thus the true CFD computed using data from 300

cells will b
e steeper than

th
e

sample CFD computed from 4
0 data points. This pattern is

illustrated b
y comparing

th
e

true CFD (black curve) and

th
e

estimated CFD (

re
d

curve) in

Figure 5
.
.

1
.

This increase in th
e

variance o
f

th
e

p
's due to small sample size is th
e

kernel

o
f

th
e

sample size problem with

th
e CFD. Now consider

th
e

behavior o
f

p
's computed

5
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from conditional simulations based o
n

th
e sample. Compute x and s a
s estimates o
f 3

and 9 from

th
e

sample o
f

4
0

in th
e

usual way. The conditional simulation is done b
y

populating

th
e

5x60 grid with data from a normal distribution with mean x
i

and variance

s
2
i.

The exceedance probability

f
o

r

these simulated data

f
o

r

th
e

it
h month is

)C)/s-
-(x
s
(

1
'

siiixp__=

where :

x
s
s

is simulated data a
t

location s

x
i

is th
e

estimated mean used in th
e

conditional simulation, and

s
i

is th
e estimated standard deviation used in th
e conditional simulation.

If th
e

p
'

were constant over months,

th
e

variance o
f

th
e

p
's estimated b
y

conditional

simulation would b
e

(

p
'(

1
-

p')/ 300). The sample size component o
f

this variance has been

standardized to 300 which is th
e

same a
s

th
e

sample size component o
f

th
e

true

p
's

,

b
u
t

th
e

variability o
f

conditionally simulated
p
's will b
e greater than that o
f

true

p
's because

estimates o
f

x
i

and s
2
i

will vary over months. The parameter p and

it
's estimate p
'

will

b
e close if x and s

a
re close to 3 and 9
.

In th
e

simple case with constant mean and

independent errors,

th
e CFD estimated b
y conditional simulation will better approximate

th
e

true CFD because both

a
re based o
n binomial distributions with

th
e

same N and

approximately

th
e

same p
.

Now consider

th
e

same sequence o
f

distributions where

th
e

assumption o
f

independence

is relaxed and interpolation o
f

th
e

data is used to estimate

th
e

proportion o
f

noncompliance. The introduction o
f

spatial covariance in th
e

base simulation changes

distribution o
f

the true

p
's

to a dependent binomial. The dependent binomial will have

variance similar to a
n

independent binomial with N < 300. Sample size that approximates

th
e

variance o
f

th
e

dependent binomial is termed Nb. The variance o
f

th
e

p
's estimated

from spatially dependent data is approximated b
y

( p
(

1
-

p
)
/

Nb) where N
b < 300 and thus

th
e CFD from

th
e

independent case will b
e steeper than from

th
e

dependent case. The

degree to which N
b

is less than N will depend o
n the strength o
f

the spatial correlation.

Next consider

th
e

effect o
f

dependent data and interpolation o
n

th
e

distribution o
f

th
e

p
's

.

When w
e

interpolate

th
e

sample o
f

4
0 onto

th
e

grid o
f

300,

th
e

interpolated surface is

smooth relative to th
e

original data ( compare green and

re
d

in Figure 5.2). Because o
f

this increased dependence in th
e

krig estimates, the estimates o
f

p computed from the

interpolated data behave more like binomial data with N
=

N
s

(

th
e

sample size) than like

binomial data with N
=

N
b

(

th
e

number o
f

grid cells). Because N
s

is smaller than Nb,

th
e

variance o
f

th
e

population o
f

p
's computed from interpolated data will b
e

greater. The

greater variance explains why

th
e

red line in Figure

5
.1

is much flatter than

th
e

black line.
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Figure 5.7. Simulated chlorophyll data, kriging estimates based o
n a sample o
f

the

simulated data, and conditionally simulated data where the simulation is

conditioned o
n

th
e

data used obtain the kriging estimates.

Finally consider

th
e

effect o
f

conditional simulation o
n

th
e

distribution o
f

th
e

p's. When

data

a
re conditionally simulated and

th
e mean and variogram estimated from

th
e

sampled

data are accurate, then

th
e

character o
f

th
e

simulated data will b
e similar to that o
f

th
e

true data (compare

th
e

green and blue in Figure 5.7). Like

th
e

simple independent case,

th
e

population o
f

p
's computed from

th
e

conditionally simulated data will have a

binomial variance that is similar to a binomial with sample size Nb. The simulation

experiment shows that

th
e CFD computed from these conditionally simulated

p
's will

have a shape similar to the true CFD. This effect is illustrated in Figure 5.6 where the

median o
f

th
e

conditionally simulated CFDs (blue line) is more similar to th
e

true CFD
(black line) than is th

e CFD estimate based o
n kriging (

re
d

line). Additional analytical

6
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work is needed to formalize

th
e

heuristic concepts presented here,

b
u
t

this finding

indicates a productive direction in developing statistical inference procedures in th
e CFD

approach.

Confidence Intervals

The most successful technique

f
o

r

computing confidence bounds

f
o

r

th
e CFD were

obtained using conditional simulation based o
n kriging interpolation o
f

th
e

sample data.

The 95% confidence bands (green lines, Figure 5.6) a
re well centered over th
e

true CFD
(black line)

f
o

r

th
e

simplistic case where

th
e

true data have spatial dependence but n
o

spatial o
r

temporal trends. When these simplistic assumptions

a
re relaxed (Figure 5.8)

and th
e

true data a
re simulated to have spatial dependence and temporal and spatial trends

similar to chlorophyll data from the Patuxent estuary,

th
e

confidence bands cover

th
e

true

CFD in this case a
s

well. Experiments that varied

th
e

sample size also produced

confidence bands with good coverage.
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Figure 5.8. Confidence bounds based o
n quantiles o
f

fraction o
f

space computed o
n

conditionally simulated surface estimates using variogram estimates from data. The

base simulation has spatial and temporal trend estimated from Patuxent data.

Sample size is 4
0

Additional evaluation o
f

th
e

confidence band procedure should include a series o
f

confidence band coverage experiments to assess

th
e

true coverage rate in comparison to

th
e

nominal coverage rate ( e
.

g
.

95% in this example). This series o
f

experiments should

b
e conducted with simulated data where

th
e

simulations

a
re designed to produce data

with properties similar to th
e three primary assessment water quality parameters.
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6
.0 Findings –Scientific Acceptance o
f

CFD Compliance Approach

6.1. CFD Approach a
s Best Available Science

This report represents a
n

initial expert review o
f

th
e CFD compliance approach. In

addition

th
e

panel undertook simulation tests o
n

th
e

effects o
f

1
)

sample densities in time

and space, 2
)

varying levels o
f

attainment, and 3
)

varying degrees o
f

spatial and temporal

covariance. Further, trials o
f

spatial modeling o
n fixed station Chesapeake Bay water

quality data were conducted to begin to evaluate spatial modeling procedures. Based

upon review o
f

underlying theory, initial statistical assessments, and implementation

feasibility,

th
e

panel finds that

th
e CFD approach currently represents best available

science in it
s application to water quality attainment determinations in the Chesapeake

Bay. Using criteria

f
o

r

Best Science and Best Available Science developed b
y

th
e

American Fisheries Society and

th
e Estuarine Research Federation (Sullivan e
t

a
l. 2006),

w
e

li
s
t

relevant attributes o
f

th
e CFD approach (Table 6.1).

The CFD builds o
n

important statistical theory related to the cumulative distribution

function and a
s

such,

it
s statistical properties can b
e simulated and deduced. We have

also shown that it is feasible to construct confidence ellipses that support inferences

related to threshold curves o
r

other tests o
f

spatial and temporal compliance. Work

remains to b
e done in understanding fundamental properties o
f

how

th
e CFD represents

likely covariances o
f

attainment in time and space and how temporal and spatial

correlations interact with sample size effects. Further, more work is needed in analyzing

biases across regions and designated use segments. The panel expects that a two- three

year time frame o
f

directed research and development will b
e required to identify and

measure these sources o
f

bias and imprecision in support o
f

attainment determinations.

Through simulations o
f

th
e CFD approach, it is feasible to analyze bias and error

f
o
r

both

temporal and spatial sources o
f

attainment variability. In particular, conditional

simulations meritadditional investigation a
s a relatively unbiased approach

f
o
r

supporting statistical comparisons among CFD curves. Much work remains to b
e done in

understanding fundamental properties o
f

how th
e CFD represents likely covariances o
f

attainment in time and space. Still,

th
e

panel finds

th
e

approach feasible: one which

merits additional development, testing, and application. Indeed,

th
e CFD approach is

beginning to attract scientific and management attention outside

th
e

Chesapeake Bay

community.

A
s

shown b
y

analyses in previous sections,

th
e

approach can efficiently combine spatial

and temporal data to support inferences o
n whether regions within

th
e

Chesapeake Bay

attain o
r

exceed water quality standards. O
n

th
e

other hand, w
e

recognize substantial bias

and imprecision can occur due to small sample size, non- independence in temporal

trends, and inadequate spatial interpolations. More work is needed in analyzing these

biases across regions and designated use segments. Further,

th
e

o
ld saw o
f

needing more

samples cannot b
e ignored. In particular,

th
e

panel is optimistic in th
e

application o
f

continuous spatial data streams made available through

th
e

cruise- track monitoring

program, and

th
e

promise o
f

continuous temporal data through further deployment o
f
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remote sensing platforms in th
e Chesapeake Bay (CBOS web site, etc). These data sets

will support greater precision and accuracy in both threshold and attainment

determinations made through

th
e CFD approach.

In classifying

th
e CFD approach a
s

best available science, w
e

seek to make several

important distinctions (Table 6.1). First,

th
e CFD approach is a scientifically based

approach based upon

it
s clear purpose, conceptual and design framework, empirical

procedures, documentation, and intent to develop rigorous statistical and review

procedures (Sullivan e
t

a
l.

2006, Daubert v
.

Merrell Dow Pharmaceuticals, Inc., 1993).

That

th
e

approach permits evaluation o
f

uncertainty also supports

it
s classification a
s

best

available science (Christman2006). O
n

th
e

other hand, w
e

d
o

n
o
t

believe that

th
e CFD

approach y
e

t

constitutes best science. Here, further analyses o
f

underlying statistical

properties o
f

the approach (including sampling design and interpolation elements) and

vetting b
y

outside experts is needed. Indeed, although

th
e CFD approach is beginning to

g
e
t

featured in scientific venues, it h
a

s

n
o
t

y
e

t

been reviewed a
s

part o
f

th
e

scientific

literature. The panel sees this a
s

a
n overdue next step

f
o
r

necessary

f
o
r

it
s acceptance,

further development, evaluation, and application.

The panel contrasted

th
e CFD approach with existing state and jurisdictional water

quality criteria and attainment procedures that

a
re based strictly upon

th
e

observed

sample, where site selection is n
o
t

based upon probability sampling, inferences

a
re

n
o
t

based upon error structure, and monitoring does not involve a scientifically rational

design. Indeed, standard practice

fo
r

assessing compliance with water quality criteria

throughout

th
e

U
S

is to sample monthly a
t

a fixed

s
e
t

o
f

stations and make judgments

about compliance strictly from those samples. Sampling stations
a
re typically located

f
o
r

convenience ( e
.

g
.
,

bridge overpasses), there is reluctance to r
e
-

evaluate and change

location ( s
o

a
s

to maintain a time series a
t

a fixed point), and n
o consideration is given to

representativeness o
f

th
e

sample

f
o
r

th
e

space/ time

n
o
t

sampled. Thus

th
e

previous

method used b
y

th
e

Chesapeake Bay Program, similar to th
e

approaches used in other

states, was simply based o
n EPA assessment guidance in which

a
ll samples in a given

spatial area were compiled and attainment was assumed a
s

long a
s > 10% o
f

th
e

samples

did not exceed the standard. In this past approach

a
ll samples were assumed to b
e fully

representative o
f

th
e

specified space and time and were simply combined a
s

if they were

random samples from a uniform population. This approach was necessary a
t

th
e

time

because

th
e

technology was

n
o
t

available

f
o

r

a more rigorous approach. But it neglected

spatial and temporal patterns that

a
re known to exist in th
e

standards measures. The CFD
approach was designed to better characterize those spatial and temporal patterns and

weight samples according to th
e

amount o
f

space o
r

time that they actually represent.
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Table 6.1. Evaluation o
f CFD approach a
s

Best Science o
r

Best Available Science

according to AFS/ ERF “Defining and Implementing Best Available Science

fo
r

Fisheries

and Environmental Science, Policy, and Management” (Sullivan e
t

a
l. 2006).

Attribute Best

Science

Best

Available

Science

Current State o
f

Development o
f CFD

Approach

Clear Objective YES YES Using biological response standards, combine

available water quality in time and space to determine

levels o
f

attainment o
f

Bay segments.

Conceptual

Model

YES YES 1
.

Bay divided into functional classifications –

“Designated Uses.”

2
.

Reference curves establish biologically

relevant threshold levels

f
o

r

attainment.

3
. CFD combines and weights equally temporal

and spatial sources o
f

water quality

variability.

Experimental

Design

NO YES 1
.

Bay segments a
re quasi- stratified fo
r

water

quality data collection.
2
.

Stratification o
f

water quality data b
y

designated units does not

y
e
t

occur.

3
.

Seasonal assessment o
f

water quality

attainment through spatial interpolation and

the CFD approach is feasible but incompletely

developed.

Statistical Rigor NO YES 1
.

Procedures

f
o
r

quantifying uncertainty

associated with sampling design, spatial

interpolation and CFD approach

a
re feasible

but incompletely developed.

2
.

Procedures

fo
r

interpolating water quality data

a
re feasible

b
u
t

incompletely developed,

particularly

f
o
r

3
- D interpolations o
f
dissolved oxygen.

3
.

Procedures

f
o
r

testing inferences related to th
e

CFD curve

a
r
e

feasible but incompletely

developed.

Clear

Documentation

YES YES CFD approach, water quality sampling design, and

current interpolation procedures well documented in

Chesapeake Bay Program Reports and o
n

website.

Peer Review NO YES 1
. CFD approach and sampling design upon

which it is based has not been peer- reviewed

in th
e

scientific literature.

2
.

This report comprises

th
e

first external review

b
y

scientists with statistical expertise.

3
.

Grey literature reports produced b
y CBP

received expert and stakeholder input.
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6
.2 The CFD approach and peer review

The panel views th
e CFD approach a
s

innovative, one that has general application in

water quality attainment assessments,

b
u
t

scientific acceptance o
f

th
e

approach will

require that it is subjected to more extensive and targeted peer-review in th
e

scientific

literature. Because

th
e CFD is a regulatory tool, it is particularly important that

th
e

approach is effectively communicated to th
e

scientific community a
t

large,

f
o

r

general

acceptance

b
u
t

more critically

fo
r

th
e

sustained research and development that

th
e CFD,

a
s

a nascent approach, requires. A
s

highlighted elsewhere, bias and imprecision that can

occur due to small sample densities, non- independence in temporal trends, and

inadequate spatial interpolations. Such work is novel and should elicit interest among

biostatisticians a
s

it addresses questions o
f

both fundamental and applied consequence.

Although, continued working groups, involvement through STAC o
f

expert

biostatisticians, and related reports such a
s

this one will remain important in scientific

acceptance o
f

th
e CFD approach,

th
e panel recommends immediate attention in

subjecting

th
e CFD to traditional peer review. One o
r

several review papers should b
e

submitted b
y CFD principals that

la
y

o
u
t

th
e

theory, general approach and lists emergent

scientific issues to stimulate other scientists to begin to address such issues. Several

such papers might b
e appropriate given potential interest b
y

biostatisticians and

environmental and regulatory scientists. Scientific interest will also b
e garnered b
y

public and stakeholder interest. The CFD approach here presents a challenge a
s

it is

complex in explanation. Still with careful diagrams and examples, a brochure o
n the

CFD approach should b
e extremely useful in getting uninitiated scientists and

stakeholders o
n

th
e

same page.

6.3. Biological Reference Curves

The success o
f

th
e CFD-based assessment will b
e dependent upon decision rules related

to th
e

biological reference curves. These curves represent desired segment-designated

u
s
e

water quality outcomes and reflect sources o
f

acceptable natural variability. The

reference and attainment curves follow

th
e

same general approach in derivation –water

quality data collection, spatial interpolation, comparison to biologically- based water

quality criteria, and combination o
f

space- time attainment data through a CFD.

Therefore, the biological reference curve allows

fo
r

implementation o
f

threshold

uncertainty a
s

long a
s

th
e

reference curve is sampled similarly to th
e

attainment curve.

Bias and uncertainty

a
re driven in CFD curves b
y sample densities in time and space.

Therefore, w
e

advise that similar sample densities

a
re used in th
e

derivation o
f

attainment

and reference curves. A
s

this is not always feasible, analytical methods are needed in the

future to equally weight sampling densities between attainment and reference curves.

Conceptually,

th
e CFD approach builds o
n

th
e

underlying view that water quality criteria

a
re surrogates

f
o
r

Designated Uses (regions that define ecosystem function). Implicit is a
bottom u

p model based upon eutrophication, which is expected to diminish the

designated use. Reference curves represent thresholds related to the functioning o
f
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designated

u
s
e

regions. Therefore, choice o
f

reference regions o
r

periods and sampling

design in developing reference curve is critical to th
e

implementation o
f

a scientifically-

rigorous CFD approach. Choice o
f

such regions is beyond the scope o
f

this review, but

w
e emphasize several relevant statistical issues in developing reference curves in Section

4
.
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7.0 Recommendations for Future Evaluation and Refinement o
f

the

CFD Assessment Methodology

A
s

part o
f

it
s conclusions,

th
e STAC CFD Review Panel identified critical remaining

issues that need resolution in th
e

near future. The following is a

li
s
t

o
f

critical aspects o
f

that needed research. These research tasks appear roughly in order o
f

priority. However,

it must b
e recognized that it is difficult to formulate a
s

s
e

t

o
f

tasks that can proceed with

complete independence. For example, research o
n task 1 may show that

th
e

ability to

conditionally simulate
th

e
water quality surface is critical to resolving

th
e

sample size

bias issue. This discovery might eliminate IDW a
s a choice o
f

interpolation under task 3
.

The Panel has made significant progress o
n several o
f

these research tasks and CBP is

encouraged to implement continued study in a way that maintains

th
e momentum

established b
y

this research group (Table 7.1.).

1
.

Effects o
f

Sampling Design o
n CFD Results - The CFD is a special case o
f

a
n unbiased estimator

fo
r

a cumulative distribution function o
f

a population. Like

the cumulative distribution function, the CFD is a function o
f

th
e mean and th
e

variance o
f

th
e

population being assessed. And

th
e

better

th
e mean and variance

a
re characterized with sample data,

th
e

more accurate

th
e

shape o
f

th
e CFD will

b
e
.

A
s

th
e

sampling density increases,

th
e

estimated CFD begins to approach

th
e

true CFD. However, if the sampling density is low, then sampling error could

become important and there is potential that it could affect th
e

shape o
f

the CFD
and ultimately

th
e

accuracy o
f

th
e

compliance assessment. Furthermore

th
e

potential

f
o
r

th
e

sample size to affect

th
e

shape could create a compliance

assessment bias if th
e

reference curve and assessment curve
a
re based o
n

different

sampling densities. Conditional simulation methods developed b
y STAC panel

members showed promise toward resolving these issues and mitigating potential

biases caused b
y

differences in sample size.

2
.

Statistical inference framework

f
o
r

th
e CFD - It is important in a

regulatory process to differentiate a
n exceedance that is small and might have

resulted from chance variability from those that a
re large and indicative o
f

a
n

inherent problem. This differentiation will require mathematical tools to quantify

th
e

variability in th
e CFD that occurs a
s

a result o
f

sampling. The STAC panel

made progress o
n

this issue b
y

demonstrating a confidence interval procedure

based o
n conditional simulation associated with kriging. It remains to b
e assessed

whether o
r

n
o
t

confidence intervals produced b
y

this algorithm perform a
t

the

nominal level o
f

coverage, fore example, does a nominally 95% CFD confidence

interval cover

th
e

true CFD 95% o
f

th
e

time.

3
.

Choice o
f

Interpolation Method - The STAC panel considered several

interpolation methods and outlined

th
e

features o
f

each. Those features illustrate

tradeoffs between ease o
f

implementation and maximizing the information

garnered from the data. Further work is needed to compare

th
e

features to th
e

requirements o
f

wide- scale implementation o
f

assessment procedures and

formulate a plan f
o
r

tractable implementation that results in credible assessments.
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One strategy is to implement easily performed analysis ( e
.

g
.

IDW) a
s a screening

tool to identify cases where compliance / non-compliance is clear, and then

implement more labor intensive methods ( e
.

g
.

kriging)

fo
r

cases where

compliance is more difficult to resolve. One difficulty with implementing a full

comparison o
f

methods is that implementation o
f

each method requires

considerable work in terms o
f

setting u
p

file systems, interfacing software and

data, and coupling

th
e

considerable bathymetry data o
f

th
e

bay. Thus it would b
e

prudent to narrow the choices based o
n theoretical considerations where possible.

4
.

Three- Dimensional Interpolation - Assessments o
f

th
e

dissolved oxygen

criteria require three- dimensional interpolation. However,

th
e

field o
f

three-

dimensional interpolation is n
o
t

a
s

highly developed a
s

that o
f

two-dimensional

interpolation. While
th

e
mathematics o

f

each method extend easily to three

dimensions, there

a
re relatively few examples o
f

3
- D interpolation available in th
e

literature and issues such a
s

data density requirements

f
o

r

reliable results

a
re

n
o
t

well studied. Efforts

a
re needed to further evaluate research in three- dimensional

interpolation and seek additional outside scientific input and review with th
e

goal

o
f

implementing

th
e

best available technology

f
o
r

this aspect o
f

criteria

assessment. One o
f

th
e

first efforts under this task is a study o
f

th
e

3
- D variance

stucture o
f

th
e

data to b
e

interpolated. A short term option is to implement

th
e

optimal 2
-

D interpolator in layers a
s

is done with

th
e

current IDW interpolator.

5
.

High Density Temporal Data - A
s

currently formulated, assessment

f
o
r

most o
f

th
e

open-waters o
f

th
e Bay

a
re based o
n “snapshots” in time o
f

th
e

spatial

extent o
f

criteria exceedence estimated

v
ia interpolation. Data collected

fo
r

use in

interpolation

a
re actually spaced over multiple days due to th
e

large expanse over

which sampling must b
e conducted. It is clear that technology is becoming

available that will produce high density data in both space and time. Interpolation

should accommodate data that

a
re collected densely in space. However, it is

unclear how

th
e CFD process will accommodate data that

a
re high density in

time. Further work is needed to evaluate methods to fully utilize

th
e

temporally

intensive data that is currently being collected.

The panel discussed several mechanisms

fo
r

the CBP to make progress o
n challenging

tasks ahead (Table 7.1). We recommend that a review panel oversee th
e

tasks over th
e

next 3
-

5 year time frame. This panel would periodically review trials and other products

conducted b
y

individual external scientists ( academic scientists o
r

consultants) and

existing teams o
f

CBP scientists ( e
.

g
.
,

th
e

Criteria Assessment Protocols (CAP)

workgroup). Tasks 1 and 2 are most immediate and critical and w
e recommend that these

tasks b
y

contracted

o
u
t

to external scientists, exploiting state-

o
f
-

the-

a
r
t

approaches and

knowledge. Task 3 could b
e conducted through CAP o
r

other group o
f

CBP scientists.

Task 4 and 5

a
re less immediate

b
u
t

again will require substantial expertise and

innovation and may b
e most efficiently accomplished b
y

scientific expertise outside

th
e

immediate CBP community.

7
0



Table 7.1. Research Tasks, examples o
f

specific subtasks, and suggested time frame

f
o

r
continued CFD research.

Task Schedule

1
.

Effects o
f

Sampling Design o
n CFD Results

( a
)

Continue simulation work to evaluate CFD bias reduction

v
ia conditional simulation.

( b
)

Investigate conditional simulation

fo
r

interpolation

methods other than kriging - this may lead to more simulation work.

( c
)

Implement and apply interpolation with condition

simulation o
n CBP data.

2006- 2008

2
.

Statistical inference framework for the CFD

( a
)

Implement and evaluate confidence interval procedures.

( b
)

Conduct confidence interval coverage experiments.

( c
)

Investigate confidence interval methods

f
o
r

non-kriging

interpolation methods.

( c
)

Implement and evaluate confidence interval procedures.

2006- 2008

3
.

Choice o
f

Interpolation Method

( a
)

continue to investigate other more nonparametric

interpolation methods ( e
.

g
.

loess and splines).

( b
)

implement a file system and software utilizing

th
e

“ best”

interpolation

f
o
r

CBP data.

( b
)

compare interpolations and CFD's based o
n IDW and

“best” method.

2006- 2008

4
.

Three- Dimensional Interpolation

( a
)

Implement 2
- D kriging in layers to compare to current

approach o
f

2
- D IDW in layers.

( b
)

Conduct studies o
f

3
- D anisotrophy in CBP data.

( c
)

Investigate software

f
o
r

full 3
- D interpolation. Examples

o
f

options include: custom IDW software, custom kriging software

using GMS routines, custom kriging software using the R
-

package, o
r

some other

o
f
f

th
e

shelf product.

2007- 2009

5
.

High Density Temporal Data

( a
)

Develop methods to use these data to improve temporal

aspect o
f

CFD in current implementation.

( b
)

Investigate feasibility o
f

4
-

dimensional interpolation.

2008- 2010
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